SECTION 25 3313
THERMAL UTILITY METERING INTERFACE

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes metering and monitoring for interface points for utility chilled water, hot water, and steam fed to each building, and specifies interface valves.

B. Stanford University distributes chilled water, utility hot water, and steam from central production facilities on campus. This section describes the building level metering and interface control requirements for these respective utilities. Devices listed within this section are for utility metering & do not include building side instrumentation. Metering instrumentation will interface to a local Utility Interface panel within the building. The metering points as needed can be shared with the local building control system via a local network connection. Consult with Stanford’s Sustainability & Energy Management team for project specific requirements. Stanford will supply the Utility Interface enclosure, internal I/O and programming for field installation by the contractor.

C. See section 16211 for building level electrical metering requirements.

D. Related Sections
 1. 25 0553 Identification

1.2 REFERENCES

A. Stanford FDG Drawing MS-10
B. Stanford FDG Drawing MS-11
C. Stanford FDG Drawing MS-17
D. Stanford FDG Drawing MS-68
E. Stanford FDG Drawing MC-01
F. Refer to 25 0000 Integrated Automation

1.3 DEFINITIONS

A. Refer to 25 0000 Integrated Automation

1.4 SYSTEM DESCRIPTION

A. Systems described below interface with the Utility Interface Panel.

B. Systems include metering for:
 1. Chilled Water Metering to include 7 devices: supply flow; supply, mix, and return temperatures; and supply, mix, and return pressures.
 2. Utility Hot Water Metering to include 5 devices: supply flow; supply and return temperatures; and supply and return pressures.
 3. Steam Metering to include 3 devices: flow, pressure, and temperature.

C. Control valves for:
 1. Chilled Water Interface Control Valve
 2. Utility Hot Water to Heating Hot Water Interface Control Valve
3. Utility Hot Water to Domestic Hot Water Interface Control Valve
4. Steam to Hot Water Interface Control Valve

1.5 SUBMITTALS
 A. Product data sheets including construction materials and assembly methods
 B. Valve Schedule:
 1. Indicate size, location and model of each control valve.
 2. Indicate unique tag numbers for each device, equipment item or system served.
 3. Include shut-off head required, actuator air pressure or force required to meet shut-off head, torque requirements for rotary valves, actual flow requirements based on equipment shop drawings, and calculation of actual pressure drops.
 4. Include charts, graphics or similar items used in making selections.

1.6 QUALITY ASSURANCE
 A. Obtain adequate system information necessary for valve and flow meter sizing.
 B. Refer to section 25 0000 for additional requirements.

PART 2 - PRODUCTS

2.1 CHILLED WATER BTU METER
 A. Ultrasonic Flowmeter/Calculator
 1. Manufacturer: Kampstrup
 a. Multical-801
 b. Include 4-wire temperature sensors with connection head
 c. Include 90mm sensor pockets
 2. Part Number: Type 67-L-Y-67-8-0-1-546
 3. Calibration and Sizing:
 a. Flow Tube size and calibration shall be approved by Stanford’s Energy Operations team.
 B. Power and Wiring Requirements:
 1. A dedicated 120 VAC power circuit is required to the Utility Interface Panel. The circuit should be fed from emergency power if available.
 2. A dedicated 120 VAC power circuit is required to the utility interface valve. This circuit can be used for both the chilled water and utility hot water valve if present.
 3. A lockable power disconnect is required at the btu meter and chilled water interface valve so that the devices can be safely serviced without having to shut off power to all components. Use Leviton model 1201-2L. The transmitter shall be fed emergency power if available.
 C. Communications:
 1. The BTU meter will communicate with the Utilities Interface Panel via Modbus TCP and share the following points in real time:
 a. Demand (tons)
 b. Totalized consumption (ton-hours)
 c. Water flow (gpm)
 d. Supply temperature (deg F)
 e. Return temperature (deg F)
2.2 UTILITY HOT WATER BTU METER

A. Ultrasonic Flowmeter/Calculator
 1. Manufacturer: Kampstrup
 a. Multical-801
 b. Include 4-wire temperature sensors with connection head
 c. Include 90mm sensor pockets
 2. Part Number: Type 67-L-Y-67-8-0-1-246
 3. Calibration and Sizing:
 a. Flow Tube size and calibration shall be approved by Stanford’s Energy Operations team.

B. Power and Wiring Requirements:
 1. A dedicated 120 VAC power circuit is required to the Utility Interface Panel. The circuit should be
 fed from emergency power if available.
 2. A dedicated 120 VAC power circuit is required to the utility interface valve. This circuit can be used
 for both the utility hot water and chilled water valve if present.
 3. A lockable power disconnect is required at the btu meter and utility hot water interface valve so that
 the devices can be safely serviced without having to shut off power to all components. Use Leviton
 model 1201-2L. The transmitter shall be fed emergency power if available.

C. Communications:
 1. The BTU meter will communicate with the Utilities Interface Panel via Modbus TCP and share the
 following points in real time:
 a. Demand (btu/hour)
 b. Totalized consumption (btu)
 c. Water flow (gpm)
 d. Supply temperature (deg F)
 e. Return temperature (deg F)

2.3 UTILITY INTERFACE TEMPERATURE TRANSMITTERS

A. Manufacturers: Weed (by Ultra Electronics) or approved equivalent

B. Use 100 Ohm platinum RTD with a 4500H 2 wire, 4-20 mA current output signal proportional to
 specified temperature span of transmitter
 1. Accuracy:± 0.12% at 32°F (Class B)
 2. Temperature Operating Range for Chilled Water……-20 to 170°F
 3. Humidity Operating Range:............ 0 to 99% RH
 4. Conformance: DIN-IEC 751
 5. Range:Consult with Owner before ordering

C. Include thermowell with spring loaded sensor

D. Calibration and Sizing
 1. Calibrated range for chilled water service is 30 to 80°F
 2. Calibrated range for hot water service is 80 to 220°F

E. Weed Part Numbers:
 1. Head: 5A00A1
 2. Spring Loaded Sensor: 305-01B-A-4-C-xxx.x-z006 (xxx.x equals length to nearest 0.1”)
 3. Thermowell: ¾-S260-Ux.x0-Tx-316SS (x.x equals insertion length, x=lagging dimension)
 4. Transmitter: 4HQT4U+030+0080F (chilled water), 4HQT4U+080+0220F (hot water)
2.4 UTILITY INTERFACE PRESSURE TRANSMITTERS

A. Manufacturers: Setra, Ashcroft, Dwyer

B. Include pressure sensor and integral transmitter. Transmitters shall use capacitance sensing element.

C. Performance:
 1. Power 24VDC loop powered (2-wire)
 2. Output Linear, 4-20mA (2-wire loop)
 3. Accuracy ± 0.25% of calibrated span
 4. Linearity ±0.1% of calibrated span
 5. Hysteresis ±0.05% of calibrated span

D. Calibration and Sizing
 1. Calibrated range for pressure transmitters shall be 0-150 psig.

E. Setra Part Number
 1. 2561-150P-G-xx-11-x (contractor will select x’s with their needs)

2.5 STEAM FLOW METER

A. Vortex Flow Meter with integrated Transmitter:
 1. Manufacturers: Rosemount, or approved equivalent.
 2. The following instruments shall be used:
 c. Pressure Transmitter Manifold: Rosemount Model No. 0306-R-T-2-2-BA-1-1.
 e. Temperature Element and Thermowell: Rosemount Model No. 0068-N-2-1-N-00-A-(immersion length)-T26-XA.

 3. Calibration and Sizing:
 a. Calibrated range for pressure transmitters shall be 0-300 psig.
 b. Calibrated range for the temperature transmitters shall be 200-400 degrees F.
 c. Flow meter size and calibration shall be approved by Stanford’s Facilities Energy Management team.

 4. Power and Wiring Requirements:
 a. Meter is loop powered from the Stanford Utilities Interface panel.

2.6 CHILLED WATER INTERFACE CONTROL VALVE

Note: The building distribution system shall be designed as a primary/secondary system with booster pump and crossover bridge (Reference Standard Drawing MS-10). In no instance shall the building booster pump be allowed to operate in series with the campus distribution system. The building booster pump shall be controlled per MS-10 and will be used in conjunction with the interface valve to ensure the building returns 60°F water to the chilled water distribution system.

A. The chilled water interface control valve shall be line sized with near zero pressure drop, normally closed (N.C.) and able to shut off against sixty (60) PSI differential pressure with no more than 0.1% of maximum flow leakage.

B. The chilled water interface valve controller shall be capable of receiving a digital input from the campus utilities interface panel that will serve to command the valve closed in case of a utility distribution emergency.

C. Manufacturer: Belimo or approved equivalent
D. Shall be a characterized ball valve for valves up to 6”. For valves larger than 6”, contact Stanford’s Energy Operations department for job specific requirements.

E. Characteristics:
 1. Turndown ratios...40:1
 2. Flow CharacteristicsModified equal percentage
 3. Body TypeThreaded ends 2” and smaller, flanged 2.5” and larger
 4. Body MaterialStainless Steel
 5. Stem ..Stainless Steel

F. Valve Actuator
 1. Actuators shall have fail closed return.
 2. Actuator shall close against 125 percent of the maximum differential to which they are subjected.
 3. Modulating actuator input signals shall be 4-20ma.
 4. Actuators shall be Brushless DC Motor Technology with stall protection.
 5. Actuators shall be protected from weather (water) as needed.

2.7 UTILITY HOT WATER TO HEATING HOT WATER INTERFACE CONTROL VALVE

Note: The building will have one or more hot water heat exchangers to receive utility hot water and produce heating hot water and domestic hot water. Reference the building P&ID for details.

A. The utility hot water interface control valve shall be normally closed (N.C.) and able to shut off against sixty (60) PSI differential pressure with no more than 0.1% of maximum flow leakage.

B. The UHW interface valve controller shall be capable of receiving a digital input from the campus utilities interface panel that will serve to command the valve closed in case of a utility distribution emergency.

C. Manufacturer: Belimo or approved equivalent

D. Shall be a characterized ball valve for valves up to 6”. For valves larger than 6”, contact Stanford’s Energy Operations department for job specific requirements.

E. Characteristics:
 1. Turndown ratios...40:1
 2. Flow CharacteristicsModified equal percentage
 3. Body TypeThreaded ends 2” and smaller, flanged 2.5” and larger
 4. Body MaterialStainless Steel
 5. Stem ..Stainless Steel

F. Valve Actuator
 1. Actuators shall have fail closed return.
 2. Actuator shall close against 125 percent of the maximum differential to which they are subjected.
 3. Modulating actuator input signals shall be 4-20ma.
 4. Actuators shall be Brushless DC Motor Technology with stall protection.
 5. Actuators shall be protected from weather (water) as needed.

2.8 UTILITY HOT WATER TO DOMESTIC Hot Water interface control VALVE

A. The DHW interface control valve shall be a 2-way valve configured to fail closed on loss of power or signal.

B. The DHW interface valve controller shall be capable of receiving a digital input from the campus utilities interface panel that will serve to command the valve closed in case of a utility distribution emergency.
PART 3 - EXECUTION

3.1 Controls contractor to coordinate with piping trade for location and installation details.

3.2 If emergency power if furnished to the building, then power the Utility Interface Panel and associated devices to an emergency power circuit.

3.3 CHILLED WATER METER
 A. The upstream and downstream runs of the flow meter shall be straight meter sized piping without taps, feed-ins, or thermowells for the following number of meter size pipe diameters:
 1. Upstream - 10 pipe diameters, minimum.
 2. Downstream - 5 pipe diameters, minimum.
 B. Meter shall be installed on the supply line before any heat exchangers or building loads.
 C. Grounding straps are provided and must be bonded to pipe on both sides of meter.
 D. Pressure transmitters that have a sensing port greater than 6’ above ground shall be mounted on a wall or pipe stand. Mounting orientation of pressure transmitters shall be as shown in MS-17.
 E. Refer to MS-10 for further details.

3.4 UTILITY HOT WATER METER
 A. The upstream and downstream runs of the flow meter shall be straight meter sized piping without taps, feed-ins, or thermowells for the following number of pipe diameters:
 1. Upstream - 10 pipe diameters, minimum.
 2. Downstream - 5 pipe diameters, minimum.
 B. Meter shall be installed on the supply line before any heat exchangers or building loads.
 C. Pressure transmitters that have a sensing port greater than 6’ above ground shall be mounted on a wall or pipe stand. Mounting orientation of pressure transmitters shall be as shown in MS-17.
 D. Refer to MS-68 for further details.

3.5 STEAM METER
 A. The flow meter shall be installed before the pressure-reduction station. Refer to MS-20. The upstream and downstream runs of the flow meter shall be straight meter sized piping without taps, feed-ins, or thermowells for the number of diameters as follows:
 1. Upstream - 20 pipe diameters, minimum.
 2. Downstream - 5 pipe diameters, minimum.
 B. Pressure transmitters shall be mounted on wall or pipe stand. Mounting orientation of pressure transmitters shall be as shown in MS-17.

3.6 CHILLED WATER INTERFACE CONTROL VALVE
 A. Sufficient upstream and downstream piping runs must be provided to ensure proper valve capacity and flow response.
 B. Refer to MS-10
3.7 UTILITY HOT WATER TO HEATING HOT WATER INTERFACE CONTROL VALVE
 A. Sufficient upstream and downstream piping runs must be provided to ensure proper valve capacity and flow response.
 B. Refer to MS-68.

3.8 UTILITY HOT WATER TO DOMESTIC HOT WATER INTERFACE CONTROL VALVE
 A. Sufficient upstream and downstream piping runs must be provided to ensure proper valve capacity and flow response.
 B. Refer to MS-68.

3.9 STEAM TO HOT WATER INTERFACE CONTROL VALVE
 A. Sufficient upstream and downstream piping runs must be provided to ensure proper valve capacity and flow response.

END OF SECTION