Stanford – Historical Facts

Stanford University was founded by Leland and Jane Stanford in 1885 and opened its doors on October 1, 1891. The first cornerstone in the Main Quad was placed on May 14, 1887.

Stanford Campus

Stanford has more than 49 miles of roads, a 49-megawatt power plant, two separate water systems, three dams and lakes, 88 miles of water mains, a central heating and cooling plant, a high-voltage distribution system and a post office. Stanford provides or contracts for its own fire, police and other services.

Stanford Land

8,180 acres
- Main Campus (including Medical Center, Golf Course, Foothills to ridge): 2,616 acres
- Jasper Ridge: 1,186 acres
- Stanford Research Park: 700 acres
- Stanford Shopping Center: 69 acres
- Sand Hill Road: 62 acres
- SLAC: 424 acres
- Other Managed Lands (including agricultural lands): 3,123

Stanford Buildings

14.2 million gsf
700 major buildings

Trees

43,000 campus trees; Coast Live Oak most common

Number of Students, Faculty and Staff

Total undergraduates: 6,878
Total graduates: 8,441
Total faculty: 1,910
- 451 appointed to endowed chairs
- 26 winners of the Nobel Prize since the founding of the university
Total staff: 10,101 including:
- Managerial and professional: 5,051
- Clerical and technical: 2,851
- Service and maintenance: 731
- SLAC National Accelerator Laboratory: 1,468

Housing

Stanford is a residential teaching and research university. Nearly 95% of undergraduates and about 52% of graduate students live in university housing. Entering freshmen are guaranteed four years of undergraduate campus housing. Housing for single graduate students consists of University-owned apartments, residences, and spaces in cooperative houses.

Information from Stanford Facts 2009, produced by the Office of University Communications
www.stanford.edu
SECTION 1 - LAND AND BUILDINGS
LBRE Organization

<table>
<thead>
<tr>
<th>Buildings & Grounds Maintenance</th>
<th>Department of Project Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Services</td>
<td>Real Estate</td>
</tr>
<tr>
<td>Capital Planning & Space Management</td>
<td>Sustainability & Energy Management</td>
</tr>
<tr>
<td>Heritage Services</td>
<td>Parking & Transportation Services</td>
</tr>
<tr>
<td>Finance & Administration</td>
<td>Utilities</td>
</tr>
<tr>
<td>Land Use & Environmental Planning</td>
<td></td>
</tr>
<tr>
<td>Maps & Records</td>
<td>University Architect/</td>
</tr>
<tr>
<td></td>
<td>Campus Planning and Design</td>
</tr>
</tbody>
</table>
RENDERINGS OF CURRENT CONSTRUCTION PROJECTS

Bing Concert Hall - Lasuen Elevation

William H. Neukom Building - Salvatierra View

Freidenrich Center for Translational Research - Welch Rd Perspective

SLAC Research Support Building - View from Loop Road

East Campus Dining Commons - Perspective
CAMPUS PLACES AND ARTIFACTS

Corinthian Columns at LKSC

Water Feature outside Gunn Building

Wild Flowers by Serra Street and Escondido Village

Huang Center Library - Old Airplane Propellers

SEQ 2 - Purple Jacarandas outside HEC

SOM Connective Elements - View of Discovery Walk
2009/10 CAPITAL PROJECTS MAP

1. SOE Automotive Innovation Facility
2. DOR John A. and Cynthia Fry Gunn Building
3. SOE Science and Engineering Quad 2
4. SOM Li Ka Shing Center for Learning and Knowledge
5. SOM Lorry I. Lokey Stem Cell Research Building
6. SOE Peterson Building Renovation
7. PRES/PROV Visitor Information Center/Track Bleachers Expansion
8. R&DE East Campus Dining Commons
9. GSB Knight Management Center
10. PRES/PROV Madera Grove Children's Center/Mulberry House
11. SLS William H. Neukom Building
12. DAPER Olmsted Road Staff Rental Housing
13. PRES/PROV Olmsted Terrace Faculty Homes
14. PRES/PROV Bing Concert Hall
15. SOM Freidenrich Center for Translational Research
16. SLAC SLAC National Accelerator Laboratory/Research Support Building (not shown on map)
17. SOE Bioengineering/Chemical Engineering Building
18. R&DE Manzanita Undergraduate Dorm
2009/10 Capital Project Descriptions

This section provides detailed descriptions of capital projects active in 2009/10 (as of June 2010 Board approvals).

<table>
<thead>
<tr>
<th>SCHOOL/DEPT</th>
<th>PROJECTS</th>
<th>PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOE</td>
<td>Automotive Innovation Facility</td>
<td>Complete</td>
</tr>
<tr>
<td>DOR/H&S/SOE</td>
<td>Center for Nanoscale Science and Engineering</td>
<td>Complete</td>
</tr>
<tr>
<td>DOR/H&S/SOE</td>
<td>Center for Nanoscale Science and Engineering Fit-up</td>
<td>Complete</td>
</tr>
<tr>
<td>DOR</td>
<td>John A. and Cynthia Fry Gunn Building</td>
<td>Complete</td>
</tr>
<tr>
<td>SOE</td>
<td>Jen-Hsun Huang Engineering Center</td>
<td>Complete</td>
</tr>
<tr>
<td>DOR/H&S/SOE</td>
<td>SEQ 2 Connective Elements</td>
<td>Complete</td>
</tr>
<tr>
<td>SOM</td>
<td>Li Ka Shing Center for Learning and Knowledge</td>
<td>Complete</td>
</tr>
<tr>
<td>SOM</td>
<td>SOM Connective Elements</td>
<td>Complete</td>
</tr>
<tr>
<td>SOM</td>
<td>Lorry I. Lokey Stem Cell Research Building</td>
<td>Complete</td>
</tr>
<tr>
<td>SOM</td>
<td>SOM Connective Elements</td>
<td>Complete</td>
</tr>
<tr>
<td>SOE</td>
<td>Peterson Building Renovation</td>
<td>Complete</td>
</tr>
<tr>
<td>PRES/PROV</td>
<td>Visitor Information Center and Track Bleachers Expansion</td>
<td>Complete</td>
</tr>
<tr>
<td>R&DE</td>
<td>East Campus Dining Commons</td>
<td>Construction</td>
</tr>
<tr>
<td>SOE</td>
<td>Jen-Hsun Huang Engineering Center Fit-up</td>
<td>Construction</td>
</tr>
<tr>
<td>GSB</td>
<td>Knight Management Center</td>
<td>Construction</td>
</tr>
<tr>
<td></td>
<td>Knight Management Center Buildings</td>
<td>Construction</td>
</tr>
<tr>
<td></td>
<td>Knight Management Center Connective Elements</td>
<td>Construction</td>
</tr>
<tr>
<td></td>
<td>Parking Structure 7</td>
<td>Construction</td>
</tr>
<tr>
<td></td>
<td>Serra Building Demolitions</td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>GSB South Demolition</td>
<td>Future</td>
</tr>
<tr>
<td>PRES/PROV</td>
<td>Madera Grove Children’s Center/ Mulberry House</td>
<td>Construction</td>
</tr>
<tr>
<td>SLS</td>
<td>William H. Neukom Building</td>
<td>Construction</td>
</tr>
<tr>
<td>DAPER</td>
<td>Olmsted Road Staff Rental Housing</td>
<td>Construction</td>
</tr>
<tr>
<td>PRES/PROV</td>
<td>Olmsted Terrace Faculty Homes</td>
<td>Construction</td>
</tr>
<tr>
<td>PRES/PROV</td>
<td>Bing Concert Hall</td>
<td>Project/Construction</td>
</tr>
<tr>
<td>SOM</td>
<td>Freidenrich Center for Translational Research</td>
<td>Design</td>
</tr>
<tr>
<td>SLAC</td>
<td>SLAC National Accelerator Laboratory/</td>
<td>Design</td>
</tr>
<tr>
<td></td>
<td>Research Support Building</td>
<td></td>
</tr>
<tr>
<td>SOE</td>
<td>Bioengineering/Chemical Engineering Building</td>
<td>Concept/Site</td>
</tr>
<tr>
<td>R&DE</td>
<td>Manzanita Undergraduate Dorm</td>
<td>Concept/Site</td>
</tr>
</tbody>
</table>
Campus Aerial View - Summer 2010
AUTOMOTIVE INNOVATION FACILITY

Background
The Automotive Innovation Facility (AIF) was completed in March 2010. The AIF provides a place where basic and applied research that taps into software, hardware, and materials can be tested in real vehicles with the goal of improving vehicle systems, safety, energy efficiency, and economics. The building houses high-profile Stanford projects that include the autonomously operated Stanley and Junior (Stanford’s winning entries in the 2005 and 2007 DARPA Grand Challenge, respectively) drive-by-wire research in the lab of Chris Gerdes, and the Center for Positioning, Navigation, and Time, which is working on the next generation of Global Positioning System (GPS), as well as the Stanford Solar Car.

Scope
The new facility is located on Oak Road, near the southeast corner of Stock Farm Road. The lab encompasses 8,000 gsf in an industrial-type, one-story, metal frame construction building. Exterior spaces include bike parking and a small test track for the experimental vehicles.

The building faces Oak Road and has a 101’ setback from Stock Farm Road. It opens to the outside patio via roll-up doors, taking advantage of optimal south solar orientation and ample covered outdoor work bays fronting a vehicle test track and landscape areas. The forms, materials, and detailing of the building are simple, unadorned, and reflective of the garage-like program. The height of the building is 28’ to the higher eave.

The AIF was constructed with a pre-engineered industrial system. It gives efficient lighting with daylight sensors and efficient passive solar design, with long north and south exposures, clerestory windows, and large overhangs on the south face. Ventilation monitors at the roof provide naturally convective ventilation as well as relate to the more rural context of the adjacent buildings. The building houses open work bays, meeting and support rooms, a shop that hosts the noisiest type of work, and a transparent kitchen and lounge that interrupts the work bays and provides a place for teams of different disciplines to compare notes and trade ideas.

Existing and relocated trees along Stock Farm Road and Oak Road screen the side and back elevations of the building as seen from Stock Farm Road while framing views to the building entry. All existing major oaks were preserved. Screening shrubs were planted along the building’s north and west edges to provide a sense of enclosure and entry, respectively. A landscaped bike parking area is located to the west of the building. Vehicular access is provided by an asphalt drive entering from Oak Road aligned with the existing drive across the street. The asphalt drive services the south side of the building as well as the two ancillary uses to the site while doubling as a test track. South of the asphalt drive, a screened gravel area allows storage of trailers and experimental vehicles.

Project Data
Project Phase: Complete
Architect: Cody Anderson Wasney
Contractor: Hillhouse Construction
Gross Square Feet: New Construction 8,000
School: Engineering (SOE)
CENTER FOR NANOSCALE SCIENCE AND ENGINEERING

Background
The Center for Nanoscale Science and Engineering is part of the SEQ 2 Master Plan, which includes the construction of four new academic facilities: the Jerry Yang and Akiko Yamazaki Environment and Energy Building (Y2E2), the Jen-Hsun Huang Engineering Center (HEC), the Center for Nanoscale Science and Engineering (Nano Center) and the Bioengineering and Chemical Engineering building (BioE/ChemE). The plan also comprises the connective elements, associated demolitions, and the utilities and infrastructure in support of these buildings. The Nano Center was completed in May 2010 with lab outfitting and move-in occurring over the summer to enable full operation for the start of the 2010-11 academic year.

The Nano Center features the most advanced equipment available to explore matter at the nanoscale, such as an e-beam lithography tool and an atomic force microscope, much of it located underground to provide the stringent control of vibration, light, and cleanliness that is essential for nanoscale research. The Nano Center provides lab space for approximately 70 researchers from all over campus, including leaders in the natural and physical sciences, engineering, and medicine.

Scope
The Nano Center is located on the northern portion of the old HEPL building site, which was demolished in 2008. The new building is a three-story above grade facility with a basement and subbasement housing low vibration laboratories. The 102,219 gsf facility houses a broad spectrum of laboratories including a Nanopatterning lab, optical facilities, optical materials labs, a flexible cleanroom, crystal shop, and biological research labs. The building also supports the Ginzton Laboratory and the new Institute for Nanoscience and Engineering.

The Nano Center highlights a series of arcades on the south façade of the building. The architectural vocabulary is based on the design concepts outlined in the SEQ 2 Master Plan, which was approved by the Board of Trustees in December of 2004.

Project Data
Project Phase: Complete
Architect: BOORA Architects, Inc.
Contractor: Hathaway Dinwiddie
Gross Square Feet: New Construction 102,219
Department/Schools: Dean of Research (DOR), Humanities and Sciences (H&S), and Engineering (SOE)
CENTER FOR NANOSCALE SCIENCE AND ENGINEERING FIT-UP

Background
The planning and construction of the Nano Center and the Huang Engineering Center (Phase 2 of the SEQ 2 Master Plan) proceeded in concert with each other. Both buildings were completed within a month of each other. The respective fit-up scope for both buildings was not part of the initial building scope and budget.

The fit-up for the Nano Center project included the completion of interior construction of the labs and the utilities hook-up of all the research equipment in the space.

Scope
The Nano Center houses offices, student spaces, conference rooms and lounge facilities along with 17 research facilities that will serve multi-disciplinary programs within the Dean of Research, School of Engineering, Humanities and Sciences, and School of Medicine. Approximately 25% of the lab space is currently shelled to accommodate future program needs. Whereas the Center for Nanoscale Science and Engineering encompasses 102,218 gsf, the fit-up project developed about 30,000 gsf of lab space. The laboratory facilities include basic shared research spaces and optic research labs, along with specialized research spaces such as the Micro Fabrication Facility and the Nanopatterning Center (approximately 9,000 gsf). These two Class 100 facilities house flexible clean rooms and dedicated spaces for lithography and microscopy tools. The project scope included the relocation of all the labs previously housed in the Ginzton Laboratory Building and the installation of new research equipment. The new equipment was purchased directly by the department, but the installation and the seismic anchoring was included in the Nano Fit-up project.

The building has two basements and three above ground floors. The majority of the lab space is housed in the basement and sub-basement, which have been designed to meet tight vibration, noise and EMI criteria required for the successful operation of some of the research equipment. The fit-up project was implemented simultaneously with the base building and the project was granted TCO (Temporary Certificate of Occupancy) in July 2010. The last move of the activation phase was completed at the end of September 2010.

Project Data
Project Phase: Complete
Architect: CAS
Contractor: Hathaway Dinwiddie
Gross Square Feet: Fit-up 30,000
Department/Schools: Dean of Research (DOR), Humanities and Sciences (H&S), and Engineering (SOE)
JOHN A. AND CYNTHIA FRY GUNN BUILDING

Background
The new Gunn Building opened in March 2010 as the new home for the Stanford Institute for Economic Policy Research (SIEPR). SIEPR is a non-partisan economic policy research organization designed to unite economists from a variety of entities within the university to analyze, discuss, and debate economic topics and issues. SIEPR’s research program is conducted within three key centers: the Stanford Center for International Development (SCID), the Center on Employment and Economic Growth (CEEG), and the Center for Public and Private Finance (CPPF). Additionally, SIEPR hosts a number of conferences throughout the year.

Scope
The new 35,337 gsf building provides office and support space for faculty, fellows, and research assistants as well as a conference and seminar center. The building is located at the corner of Galvez Street and Memorial Way, next to the Landau Economics Building. A series of connective elements have been designed to create synergy between the Gunn Building and the existing Landau Building.

The new facility is a three-story structure that is divided into two wings with a glass connector. The architecture of the new building references attributes of important Stanford buildings. The arched entry is reminiscent of Memorial Auditorium’s grand entry and the rhythm of two-story arches and deep window niches are derived from Green Library. The new building is similar in height to the Landau Building and the Alumni Center, and respects Memorial Auditorium as the tallest building in the neighborhood. The ground floor of the main building includes a large conference room (capacity for 180 people), a small conference room and a main lobby area. The ground floor connects to a large courtyard, which can be used for gathering and pre-function events. The courtyard is surrounded by arcades on two sides and also serves as the main connector between the Landau Building and the new building. A landscaped seat wall/trellis parallel to Galvez Street has been designed to provide an edge to the SIEPR courtyard as well as to visually connect the Landau Building and the new Gunn Building. All other floors of the building are mainly comprised of office spaces.

The new building uses the existing color palette of Stanford, with red clay tile roof, beige stone and stucco walls, dark wood soffits and steel framed windows. New street trees and landscape supplement the streetscape along Galvez Street and Memorial Way. The Memorial Auditorium loading dock and service area were reconfigured in early spring of 2008.

Project Data
Phase: Complete
Architect: Kornberg Associates/Ike Kligerman Barkley Architects
Contractor: Vance Brown Builders
Gross Square Feet: New Construction 35,337
Department: Dean of Research (DOR)
JEN-HSUN HUANG ENGINEERING CENTER

Background
The SEQ 2 Master Plan includes the construction of four major academic buildings: Jerry Yang and Akiko Yamazaki Environment and Energy building (Y2E2), Jen-Hsun Huang Engineering Center (HEC), Center for Nanoscale Science and Engineering (Nano Center) and the Bioengineering and Chemical Engineering Building (BioE/ChemE). The Master Plan also includes the connective elements, associated demolitions, and utilities and infrastructure in support of these buildings. The new engineering facility was completed in March 2010.

The Jen-Hsun Huang Center, at the heart of the new SEQ 2, is the headquarters for the School of Engineering and a major destination for the west campus. The Center is an inspiring, vibrant environment, embodying the SOE’s values of entrepreneurship and innovation, depicting the School’s rich history and connections to Silicon Valley, and serving as a living example of the future of engineering.

The Huang Engineering Center is located on the southern portion of the HEPL building site. The new facility houses the Dean’s Office and the Management Science and Engineering Department.

Scope
The new 128,821 gsf building is composed of three stories above ground and a basement, which is partially exposed on the south side. The same architectural elements, sustainable design features and exterior skin materials have been carried forward from the Y2E2 building. The roof was constructed with infrastructure in place for future installation of photovoltaic (PV) panels on the south roof. The PV panels provide 31.5KW-DC of on-site energy production for the building. Another prominent sustainable element is the atrium roof design, which has many technical features to help with day lighting, natural ventilation and temperature control in the building. Windows are operable and fenestration is designed to address solar orientation impacts to each façade. The electrical lighting system has light-sensing controls that dim or shut the fixtures when daylight is sufficient to illuminate the building. Continuous arcades are featured on the north façade of the Center. External terrace courtyards with beautiful landscaping enhance the exterior of the building. The Cafe on the first floor of the Pavilion highlights some nice seating areas outside in the patio.

Project Data
Project Phase: Complete
Architect: BOORA Architects, Inc.
Contractor: Hathaway Dinwiddie
Gross Square Feet: New Construction 128,821
School: Engineering (SOE)
SCIENCE AND ENGINEERING QUAD 2 – CONNECTIVE ELEMENTS

Background
Phase 2 of the SEQ 2 Connective Elements project was constructed as part of the Jen-Hsun Huang Engineering Center and the Center for Nanoscale Science and Engineering building projects. The concept and design guidelines for the Connective Elements were envisioned and defined in the SEQ 2 Master Plan. The Plan emphasizes the following goals:

- A sense of balance shall be achieved by continuing the exterior architectural elements and sustainability features that were incorporated into the Jerry Yang and Akiko Yamazaki Environmental and Energy Building (Y2E2).

- An exquisite combination of design, materials, and aesthetics shall be followed to allow for the flourishing of the ‘outdoor rooms’ idea within the quad.

Scope
The scope of work represents the entire eastern half of the SEQ 2 Quad and incorporates the following elements of the SEQ 2 Master Plan in the design of the space:

- Contoured lawns provide better opportunities to support special events, encourage casual interaction, and contribute to cooling the environment of the new quadrangle in the warmer seasons.

- Large and small flowering trees are distinct landscape accents bringing color and sophistication to the area.

- Hedges accentuate and define the outdoor areas for gathering.

- Seatwalls which provide unique places where students and others can gather and interact are available.

- Benches and trees along the eastern landscaped edge of the quadrangle are placed in a rhythm that repeats the arcade module of the four buildings of the quad.

- Stone pavers, as a sustainable feature, are made of porous material which allows for groundwater recharge.

- A sunken courtyard to the east of the Huang Engineering Center provides an outdoor space for large gatherings.

- Circular step rings were placed around the existing heritage oak tree that provides an area for reflection.

- An alee of trees along the eastern edge of the quadrangle compliments the existing SEQ arcade providing a soft edge to the quad.

- Two water features at the eastern access to the covered arcades recognize the contributions of William Hewlett and David Packard.

Project Data
Phase: Complete
Landscape Architect: Hargreaves and Associates
Contractor: Hathaway Dinwiddie
Department/Schools: Dean of Research (DOR), Humanities and Sciences (H&S), and Engineering (SOE)

SEQ2 Connective Elements - Seating Area outside Pavilion

SEQ2 Connective Elements - Seatwalls outside Huang Center
Li Ka Shing Center for Learning and Knowledge

Background
The newly constructed Li Ka Shing Center for Learning and Knowledge (LKSC) functions as the School of Medicine “front door.” The new Center includes a full complement of teaching, learning, and public assembly facilities for the School of Medicine (SOM). The learning and information use practices and activities enabled by the new facilities will transform medical and bioscience education and training, and contribute to the translation of discovery to clinical medicine.

Scope
LKSC encompasses a total of 118,000 gsf, which features a conference center, classrooms, student study and social areas, and medical simulation and virtual reality environments on four floors above grade and a basement level. The basement of LKSC is dedicated to the Center for Immersive and Simulation-based Learning, whose main objectives include the following:

- Provide an integrated environment for hands-on learning of clinical, procedural, cognitive, and interpersonal skills.
- Allow for reconfiguration of the space to simulate a range of medical environments.
- Facilitate the integrated experience of patient care as well as enabling the development of discrete skills.
- Focus on medical students by supporting interns, residents, Continued Medical Education/Continued Education Units (CME/CEU), and allied health professionals.
- Enable learning along a scale of complexity from the early years of medical school through the seasoned practitioner.
- Encompass evaluation, education and training.
- Support research on pedagogy, new technologies and human performance.

The first floor accommodates classroom environments with different teaching formats: lecture hall setting, case style learning, and various sizes of small group discussions. The second floor houses a large conference center (capacity 350), divisible into three smaller rooms, and contiguous breakout space. The third floor provides a central location for the Dean’s Office, as well as boardroom space; offices to support teaching, and three seminar rooms. The fourth floor highlights space for various student groups—medical, graduate students and postdoctoral fellows—in the form of study areas, a social meeting space and lounge, and a small fitness area.

The existing SOM buildings have a wide variety of architectural styles, palettes, and scales. The new LKSC building and associated connective elements provide the ideal opportunity to establish a strong, cohesive identity for the School. Situated at the edges of both the Main Campus and the Main Medical Center, LKSC serves as an architectural transition between two different sets of design guidelines.

Project Data
Phase: Complete
Architect: NBBJ
Contractor: Whiting-Turner Contracting Company
Gross Square Feet: New Construction 118,000
School: Medicine (SOM)

SCHOOL OF MEDICINE CONNECTIVE ELEMENTS

Background
The School of Medicine Connective Elements project created a “front door” and established a “sense of place” for the School of Medicine through the use of exterior design elements, circulation and landscaping that unify the architectural and site aesthetic of the SOM campus.

Scope
The Connective Elements project, also known as the School of Medicine Master Site Plan, was commissioned to study the development options and infrastructure to be implemented over the next 15-20 years in support of the School’s Capital Plan. The SOM Master Site Plan’s objectives include the following:

- Provide a compact development plan that preserves future expansion potential, maintains the walkability of the campus and encourages interaction between disciplines.
- Establish an identifiable “front door” for SOM, which is distinct from the hospital and improves connections east and south toward the campus.
- Solve current and future service and delivery access to new and existing buildings.
- Consider constraints and review the need for phasing during upcoming development of the region.

The Connective Elements encompass primarily that area of the SOM campus bounded by the Clark Center, Fairchild Science Building, Beckman Center, Center for Clinical Science Research (CCSR), Medical School Office Building (MSOB), LKSC, and the existing parking lot. The project scope included five components: utilities relocation (Phases 0 and 1A); utilities relocation (Phases 1B and 1C); loading dock and tunnel; RAF ramp relocation; and landscape and sitework. These components play a critical role in bringing together the variety of existing buildings and future buildings.

The utilities relocation project moved and reorganized many major utilities within the SOM area to consolidate them into defined pathways. This effort cleared sites for the loading dock and tunnel as well as for the future Stanford Institutes of Medicine (SIM) buildings. Construction of the Phase 0 and 1A Utilities were completed in September 2007. The Phase 1B and 1C Utilities are complete.

The tunnel and the new 5,890 gsf loading dock opened in the fall of 2008. The new tunnel runs east-west along the south side of CCSR connecting to the existing tunnel system. The loading dock facility serves all of the SOM buildings. It is nestled between the Lokey Stem Cell Research Building (SIM 1) and the future Stanford SIM 3 building and is situated below grade to minimize its visibility. It connects into a centralized tunnel system that will serve both the needs of existing and future SOM buildings.

The RAF ramp relocation reoriented the driveway access to the RAF dock from the parking area south of Fairchild to a direct turn from Campus Drive.

Site work and landscape design encompass an expansive area surrounding from west of Clark Center to the new loading dock west of Governor’s Lane, and south of CCSR, Beckman, LKSC and Fairchild Science to Campus Drive West. It also includes the Discovery Walk, which extends from the Clark Center to CCSR, the Foundation Walk from Campus Drive West, a formal entry plaza for LKSC, a small parking area, and a large green space.

Project Data
Phase: Complete (Site and Landscape, Dock and Tunnel, Utilities Relocation, and RAF Ramp Relocation)
Architect: NBBJ
Contractor: Whiting-Turner Contracting Company
School: Medicine (SOM)

SOM Connective Elements - View of Discovery Walk
LORRY I. LOKEY STEM CELL RESEARCH BUILDING

Background
The Lorry I. Lokey Stem Cell Research Building is one of the eight buildings of the University’s larger SEMC (Science, Engineering and Medical Campus) initiative. The construction of this building was completed in June 2010 as part of the School of Medicine’s Long Range Facilities Plan. This facility highlights the importance of creating new space for the School of Medicine’s “Institutes.” The School has developed five Institutes of Medicine: Cancer Center; Institute for Stem Cell Biology and Regenerative Medicine; Cardiovascular; Neurosciences; and Immunity Transplantation and Infection. The initial Stanford Institutes of Medicine building (SIM 1) was formerly dedicated as the Lorry I. Lokey Stem Cell Research Building. The facility’s primary research focus will be on stem cell and will include the Stem Cell Biology and Regenerative Medicine Institute (SCBRM) and Cancer Center programs.

SIM 1, along with the recently completed Li Ka Shing Center for Learning and Knowledge and future School of Medicine (SOM) buildings LKC 2, SIM 2 and 3, and FIM 1, 2 and 3, will form the new SOM campus. The School’s FIM (Foundations in Medicine) buildings will replace the existing Grant, Alway, Lane, and Edwards buildings.

Scope
The 200,000 gsf facility is located south of the Center for Clinical Sciences Research (CCSR) building along Campus Drive. The facility has a basement level barrier vivarium and three above-grade floors of research labs and support facilities. Numerous research core facilities in addition to the vivarium are accommodated into the building’s design. The cores include Imaging, Proteomics/Genomics suite, Tissue Bank, and a Stem Cell FACS (fluorescent activated cell sorter) suite. This building is connected via a tunnel to the RAF, CCSR, Beckman and other research facilities.

The Lokey Stem Cell Research Building entry plaza sits at the intersection of the Medical Center Promenade and the School of Medicine Discovery Walk. The entry plaza and landscaped space on the southwest corner break down the scale and length of the building in order to minimize the impact on Campus Drive. The face of the building on Campus Drive is set back 50’ behind the natural landscape buffer of redwood, and oak trees and understory ground cover planting typical of Campus Drive. The east/west orientation of the building allows the labs and offices to be located on the north and south faces of the building to maximize natural light. Service is accommodated through the regional loading dock/tunnel system as well as through the RAF service area.

The design for the Lokey Stem Cell Research facility builds on the “architectural kit of parts” for the SOM that was originally established with the design of the Clark Center, which serves as a transition between the design guidelines for the Main Campus and those for the Medical Center. The façade’s materials gesture toward the Main Campus and include limestone and precast concrete, an aluminum window system, and a cardinal red metal overhang element to tie into the designs of the Clark Center and the LKSC. The primary entrance for the new research building is situated off of Discovery Walk and is highlighted by a dynamic three-story high glass enclosed lobby atrium space with a red colored entry feature that celebrates the entrance and the termination of the Medical Center Promenade. A three-tier suspended glass sculpture by artist Dale Chihuly was installed within the atrium in September 2010.

Project Data
Project Phase: Complete
Architect: Zimmer, Gunsul, Frasca
Contractor: Whiting-Turner Contracting Company
Gross Square Feet: New Construction 200,000
School: Medicine (SOM)

![Lokey Stem Cell Research Building - View from LKSC](image)
PETE RSON BUILDING RENOVATION

Background
The School of Engineering, working with DPM, completed a Master Plan to assess the feasibility of realigning space along Panama Mall. One objective of this study was to meet the needs of three School of Engineering groups: The Hasso Plattner Institute of Design (“d.
institute”), the Stanford Center for Design Research (CDR) and the Design Group of the Mechanical Engineering Department. The Master Plan identified the Peterson Building as the appropriate building to accommodate these programs. The programmatic goal of the Peterson Renovation project was to create an innovative collaborative space where d.
institute, CDR and Design Group faculty, students, and other design partners can work together on collaborative projects, and this is exactly what is apparent in the newly renovated spaces. The interior design should reflect the character and culture of each of the groups, invite creativity and collaboration, prioritize functionality of the space, and promote strong interconnectivity among building occupants and visitors. Peterson is helping create a world-class facility for interdisciplinary design and “design-based-learning.”

Scope
The renovation included a seismic upgrade, new MEP systems, new fire alarm and fire sprinkler system, new elevator, restroom renovation; and the demolition and infill of the original interior courtyard. The project included limited exterior upgrades in accordance with the guidelines of the Panama Mall Master Plan. Peterson Building (Building 550) is one of the original sandstone buildings on campus. Multiple additions over the years have transformed its original narrow rectangular shape from an “L” to a large square footprint with very dark interiors. The renovation project replaced the original courtyard with a two-story atrium space designed as the main interaction space for the new programs and will be shared by all three groups. The original stone and stucco façades were restored and exposed in the building interior, and light will penetrate into the center through a rectangular clerestory. The building is considered a qualified historic building by SCCo and the university.

The main south entrance from Panama Mall connects the building with the Mechanical Engineering facility across the street. The north entrances connect the facility with Escondido Mall and Lomita Mall. All entrances lead to the central atrium, which is the new interior lobby and heart of the building.

The original 1949 infill structure was replaced maintaining the scale, mass and rhythm of the original building. The architectural style and glass and metal frame materials clearly differentiate old from new, following the Secretary of the Interior’s Standards. The new metal roof follows the profile of the original clay tile roof but is easily distinguished from the original in terms of materials and color.

A new gracious entry from Panama Mall, integrates Building 550 with the future Panama Mall design as a major east/west bicycle and pedestrian corridor. A new patio adjacent to the new east entrance was designed for gathering and pre-function events. The east service area was maintained and adequately screened with buffer planting.

Project Data

Project Phase: Complete

Architect: Cody Anderson Wasney and MKThink
Contractor: Vance Brown Builders
Gross Square Feet: Renovation 42,461
School: Engineering (SOE)

Peterson Renovation - Opening Day

Peterson Renovation - Interior View
VISITOR INFORMATION CENTER/TRACK BLEACHERS EXPANSION

Background
The Visitor Center opened in October 2009 in its new location at the former Track House store. The old space at Montag Hall and Memorial Auditorium for greeting and introducing visitors, prospective students and parents to Stanford was no longer adequate. The need for a more centralized location was essential to improve this service. The entry point into campus at the corner of Campus Drive and Galvez, which currently includes Cobb Track and Angell Field as well as the Track House store, was considered the best site for creating the new Visitor Information Center.

To accommodate the new visitor center, the retail operation in the Track House was relocated into expanded bleachers at Cobb Track and Angell Field. The expansion of the North and South Track Bleachers provided DAPER with space to host several significant track and field events each year without having to erect temporary bleachers. The expanded bleachers provide additional seating as well as platforms for media and officials, and portable ticket booths. The combination of remodeled space within the existing Track House and expansion space at the Track Bleachers has proven to be a creative solution for both programs.

Scope
The project scope included the renovation of the Track House, expansion of both the North Bleachers and the South Bleachers, as well as the reconfiguration of the Track House parking lot.

The remodeling of the Track House included a reception area and pre-function space, university displays and materials, as well as conferencing and meeting space for groups and prospective students. The new Visitor Center offers a warm and inviting 'first experience' for the Stanford Visitor. A cohesive site plan integrates the functions of the new Visitor Information Center with the expanded Track Bleachers for the bookstore retail operation and the Athletics ticket center.

The South Track Bleachers were expanded by 3,084 gsf to provide additional bleacher seating as well as newly developed space underneath the bleachers to accommodate the relocated retail operation.

The North Track Bleachers were expanded by 940 gsf to provide under bleacher space for a new ticket office for track and field events as well as storage for the track team, which was relocated from the South Track Bleachers.

The Track House parking lot was reconfigured to provide a new plaza and drop-off, a staging area for bus parking and for organizing tours, and new pedestrian walkways.

Project Data
Phase: Complete
Architect: Hoover and Associates
Contractor: Vance Brown Builders
Gross Square Feet: New Construction 4,024
Department: President/Provost (PRES/PROV)
EAST CAMPUS DINING COMMONS

Background
The goal of Stanford’s Housing Master Plan is to better serve students with an improved housing system and to provide opportunities for enhancing Residential Education. The newly renovated Crothers Hall and Mark Taper Student Center provided additional undergraduate housing for 376 students in 2010. The new dining complex will also serve as a regional dining facility, offering an alternative dining location for 155 students housed in Toyon Hall for a total of 531 students. The design capacity will accommodate 80% of 531 totaling 425 seats.

The design of the new facility focuses on academic enrichment by enhancing the student living and learning experience with a unique, innovative, educational and sustainable dining alternative. This design will foster a sense of community, encouraging intellectual and social engagement that supports individual or group study and a robust academic speaker series by integrating service, production, and seating with continuous, dynamic flow. The menu will feature a wellness-focused, diverse, organic, healthy cuisine using an energy efficient, exhibition style “just-in-time” cooking concept. The dining commons will also include a regional commissary-style prep kitchen that will provide food for other venues to reduce labor and food costs.

Scope
The project will construct a new 35,230 gsf two-story dining commons located in the Toyon parking lot adjacent to Crothers Hall and Toyon Hall. The first floor will feature an entry, student social space including a conference/dining room, production kitchen for hot and cold food preparation, regional prep stations, and support areas as well as loading facilities for deliveries. The second floor will include a servery with several adaptable “exhibition style” cooking platforms and main dining hall. In addition to typical dining hall features, this project will include “open counter” cooking surfaces encouraging interaction between chef and students. Large dining areas may include options that allow the area to be transformed into more private dining/meeting rooms.

The dining hall’s proposed design will bridge the architectural styles of the historic neighborhood dorms and the scale of the regional academic buildings. Arcades located on the north, south, and west elevations will have barrel arches that complement the rhythm and proportions of the arcades of Branner and Toyon Halls. These arcades will encourage students to access the dining hall from multiple directions.

The proposed material palette will match the palette of the recently renovated Crothers Hall: the precast body color will match the body color; the precast base color will match the accent wall color. The roof will be the ‘Stanford clay tile blend.’

The primary entrance and plaza on Arguello Way will provide a connection to Crothers Hall. The oak grove to the north will be maintained, and landscape on the south side will be consistent with the Escondido streetscape. The service court to the east will have landscape that buffers Branner and Toyon Halls, and landscape that will provide screening from Escondido.

Project Data
Project Phase: Construction
Architect: Hoover Associates
Contractor: Vance Brown Builders
Gross Square Feet: New Construction 35,230
Department: Residential & Dining Enterprises (R&DE)
JEN-HSUN HUANG ENGINEERING CENTER FIT-UP

Background
The planning and construction of the Huang Engineering Center and the Center for Nanoscale Science and Engineering proceeded in concert with each other and represent Phase 2 of the SEQ 2 Master Plan. When both buildings received Construction Approval, they were budgeted without a portion of their respective fit-up scopes.

Scope
The fit-up scope for the Huang Engineering Center includes construction enhancements to the building interior, and equipment and specialty room build-outs that are outside of the base building project scope. These build-outs are necessary for teaching and research programs to fully function.

The fit-up scope provides enhanced finishes, infrastructure, specialized fit-up, and audio/visual (A/V) equipment installation for the Stanford Center for Professional Development (SCPD) auditorium and classrooms, the boardroom, and conference rooms within the Huang Engineering Center. It also includes the build-out of a café; a full catering kitchen serving the boardroom; a wood and metal shop facility; and a shared server room. Story telling throughout the building is also part of the fit-up scope.

Fit-up scope that was implemented as part of the base building construction includes approximately $1,500,000 for infrastructure that is now in place (for example, conduits in concrete floors, electrical panels, etc).

The A/V scope, necessary for the functioning of the conference rooms, classroom and auditorium facilities, were implemented during the base building’s course of construction. The A/V equipment was installed in the conference rooms, SCPD classrooms, and the auditorium.

The café, the full catering kitchen, the wood and metal shop facility, and a shared server room was completed with the base building. The café will went on line sometime in late summer. Storytelling (interpretive displays) and enhanced interior finishes are being installed in the major public spaces throughout the building.

Fit-up activity took place simultaneously with the base building construction and was completed in April 2010, when the building received Temporary Certificate of Occupancy (TCO). The School has entered into a contract with a food service vendor for the café that will require a separate building/health department permit. This scope of work is expected to be completed by December 31, 2010.

Project Data
Project Phase: Construction
Architect: BOORA Architects, Inc.
Contractor: Hathaway Dinwiddie
Gross Square Feet: New Construction 128,821
School: Engineering (SOE)
KNIGHT MANAGEMENT CENTER

Background
The Stanford Graduate School of Business (GSB) continues to construct its new home between Serra Street, Campus Drive East and Arguello Way. With 419,000 gsf in eight buildings and 50% of its 12.5-acre site preserved for open space, the Knight Management Center consolidates the school’s facilities into a vibrant, unified indoor/outdoor, living/learning community. Located across from the GSB’s Schwab Residential Center, the Knight Center provides students, faculty, and staff the sense of being in a small town, yet still connected to the broader Stanford campus. The Knight Center architecture captures the essence of Stanford, and offers greater transparency to showcase the school’s collaborative culture.

Scope
The Knight Center buildings are organized around four primary places and connected by open arcades that serve as circulation and program space; the courtyards and arcades also create an opportunity for natural light in the majority of the buildings’ interior spaces. The J. Hugh Jackson Library on the ground floor of the Anne T. and Robert M. Bass Center will be the main welcoming area and information resource for visitors.

The Knight Center will establish a new 21st century benchmark for a vibrant, engaging ‘sense of place’ that reflects both Stanford University’s mission and the business school’s differentiating brand attributes. The project’s connective elements are designed to encourage a highly interactive living/learning environment for MBA and PhD students, the Sloan Master’s Program, and executive education participants. The four primary places include the following:

• **Town Square:** GSB’s social hub encouraging active interaction between students, faculty, and the rest of Stanford. The Bass Center, Arbuckle Dining Pavilion, Hemsley Family MBA Student Lounge, TA Café, and access to the underground parking garage are at the perimeter of this space.

• **McCoy Family Courtyard:** a quiet, more contemplative cloister space surrounded by faculty offices, PhD student space, and classrooms.

• **Knight Way:** the more energetic academic space where classrooms, seminar spaces, and breakout rooms provide a variety of educational and collaborative opportunities.

• **Community Plaza:** a space reserved for organized events, which includes the Auditorium, the Arbuckle Dining Pavilion, the Student Commons, and the John A. and Cynthia Fry Gunn Building (at Knight center) ‘that will serve as Stanford Management Company’s new home.

A main entry on Serra Street creates a front door that leads into the Town Square, while secondary entries on Serra Street, Arguello Way and Campus Drive offer permeable and inviting entrances. By aligning building entries across Serra Street and continuing a pattern of lawns and groves, the business school complex will be united while also connected to the Stanford campus.

The hard scape and landscape of exterior spaces support the program, activities and collaborative culture of the school. The buildings are predominantly three stories with a glass fiber reinforced concrete (GFRC) exterior envelope. The red tile mansard roofs in the “Stanford blend” and arcades reference some of the greatest attributes of Stanford architecture. The Knight Center will also serve as a ‘cutting edge’ example of environmentally sustainable facilities and reflect the leadership commitment of the GSB and Stanford by targeting a LEED Platinum Certification.

Project Data
Project Phase: Construction
Architect: BOORA Architects, Inc.
Contractor: Turner Construction
Gross Square Feet: New Construction 419,000
School: Graduate School of Business (GSB)
MADERA GROVE CHILDREN'S CENTER/MULBERRY HOUSE

Background
Stanford currently has four full-time children's centers: Children's Center of the Stanford Community located at 685 Pampas Lane, Stanford Arboretum Children's Center at 215 Quarry Road, CCLC at Stanford West, part of the Stanford West residential area, and Madera Grove Children's Center/Acorn House, completed and opened in 2008. The centers provide full-day education and care for children eight weeks to five years of age, and in total can accommodate 478 full-time children.

The Madera Grove Children's Center/Mulberry House will provide additional child care services for Stanford University faculty, students, post-docs, and staff exclusively. Acorn House can accommodate 100 children. Mulberry House will accommodate 100 additional children from infants (eight weeks) to pre-kindergarten (five-years old), resulting in an overall capacity of 200 children.

Scope
Mulberry House will be constructed on Olmsted Road, near the southeast corner of Serra Street and El Camino Real and adjacent to Acorn House and the Olmsted Staff Rental Housing project, which is under construction. The new building will encompass 9,411 sf in a residential-type, two-story, wood frame construction building that will essentially mirror Acorn House. The Madera Grove Children's Center will enjoy amenities similar to those at existing centers on campus such as tree-shaded outdoor play areas.

The new building will respond to the residential context of Escondido Village and provide an efficient use of the university's land resources. The facility will include approximately seven classrooms (depending on the mix) that will accommodate infants, toddlers, preschool, and pre-kindergarten children. In addition, it will have an elevator for second floor access, ADA bathrooms, offices and a teacher lounge. The exterior will incorporate existing mature trees along with new vegetation that will blend within the residential character of Escondido Village. As with the first facility, by making the infant and toddler rooms the same size, the new program has been designed for program flexibility to accommodate changes in the composition of the children.

The design of the building exterior complements the architecture of Escondido Village, enabling Mulberry House to sit quietly, nestled in the trees as viewed from El Camino Real. The two-story wood structure will have an asphalt-shingled gabled roof. The double-hung windows, board and batten siding, horizontal wood siding, and wood trim provide a residential scale and aesthetic. The material palette complements the natural colors of Escondido Village and Acorn House. The first floor houses a lobby and classrooms for infants, toddlers, and a transition age group. The second floor has preschool and pre-k classes. Both floors are connected by an elevator, as well as by indoor and outdoor stairs. The building has been designed to connect to Acorn House via a garden wall/trellis. The building and associated open spaces are universally ADA accessible.

Landscape treatment includes interior play yards and gathering spaces; landscape along El Camino Real to screen the facility, its parking, and fences from view; and Olmsted Road frontage as streetscape that is inviting to the community and consistent with other Escondido Village landscape materials.

Project Data
Project Phase: Construction
Architect: Hoover Associates
Contractor: Building & Beyond
Gross Square Feet: New Construction 9,411
Department: President/Provost (PRES/PROV)
WILLIAM H. NEUKOM BUILDING

Background
Crown Quadrangle has been the home of the Stanford Law School since the completion of the building in 1975. During the intervening 35 years, the spatial needs of the Law School have increased causing a number of programs to be housed in other buildings located outside of Crown Quad, both on and off campus. The Law School’s goal is to consolidate various programs and centers in a single complex. The first phase of the Law School Master Plan includes the new William H. Neukom Building (formerly known as the Law School Clinics and Faculty Office building).

Scope
This project involves the construction of a new three-story building for the Law School that will provide academic space for faculty, fellows, and researchers including faculty offices, Law School clinics, administrative support, seminar rooms, and support spaces. The 68,226 gsf facility is located at the corner of Nathan Abbott Lane and Lane A, on the site of the former Kresge Auditorium (which was demolished in the summer of 2009) adjacent to the existing faculty and classroom buildings. A series of connective elements have been designed to create synergy between the proposed new building and the existing Law School buildings along with the greater campus. There will be an exterior courtyard on the second floor of the new building.

The new building was limited to three stories in height with floor elevations corresponding to the existing buildings. This was done to create a visually unified Law School campus, to increase interaction among the faculty by limiting their distribution to two floors, and to align the parapet of the new building with the existing buildings.

Interior spaces have been configured to optimize programmatic adjacencies and efficiently accommodate the building program. The cylindrical “tower” is positioned at the hinge of the axis linking the Law School and the Munger Graduate Residence to define a prominent focal point and primary entry to the Law School. Seminar rooms, clinics, and support staff areas are located on the ground floor to provide easy access for visitors and to activate the ground floor. The second and third floors are organized around the faculty courtyard, which is similar in size to Crocker Garden, and contains faculty offices and the Dean’s office suite. A small faculty lounge with a sitting area, kitchen and mailboxes is located off the courtyard for informal social gatherings. Conference rooms and open meeting areas have been distributed to foster both formal and informal interaction among and between faculty and students.

Project Data
Project Phase: Construction
Architect: Ennead Architects LLP
(formerly Polshek Partnership Architects)
Contractor: Dome Construction
Gross Square Feet: New Construction 68,226
School: Stanford Law School (SLS)
OLMSTED ROAD STAFF RENTAL HOUSING

Background
The Olmsted Road Staff Rental Housing recently opened its doors in September 2010. The Department of Athletics, Physical Education, and Recreation (DAPER) had become reliant on using mortgage subsidies and housing assistance in recruiting and retaining coaches in a very competitive environment. Housing was primarily provided by means of subsidies and the few homes owned by DAPER. In lieu of providing a subsidy for the purchase of homes where equity increases are retained by the faculty and staff, DAPER proposed instead to construct and retain on-campus housing for coaches.

Scope
The project scope included the construction of 25 units of staff housing – 17 single-family detached homes and four duplexes totalling 53,824 gsf. The 3.0-acre Olmsted Housing site is bound by El Camino Real, Stanford Avenue, Olmsted Road, and the expansion site of the Madera Grove Children’s Center/Mulberry House. The single-family detached units are three bedrooms each, and range in size from 1,929 sf to 2,035 sf based on three different floor plans. The duplexes offer two-bedroom units ranging from 1,170 sf to 1,300 sf. Each building includes an attached 400 to 500 sf, two-car garage. The architectural styles of the two-story housing have been designed to meld into the surrounding neighborhoods, taking architectural cues from the bungalow cottages in College Terrace with respect to massing, scale, proportion, detail and color, and complementing the architecture of the new faculty homes along Stanford Avenue. The new faculty homes provide an assortment of differentiated styles that are appropriate for a residential development at Stanford, including Bay Area Bungalow, California Craftsman, Historical California, European, and Classic Traditional styles. The collection of rental homes meets the setback and buffer recommendations of the El Camino Plan. Although primary access to the housing is off of Olmsted Road, pathway connections to El Camino and to the university provide flexibility for guest parking and encourage alternative means of transportation for those staff that will rent the homes. The majority of the existing mature trees on the site were preserved or supplemented with residential landscaping appropriate for the use and region.

The project scope also included all associated utilities for connection to Stanford systems as well as improvements and modifications to the storm drainage system. Additionally, the landscaping, lighting, and associated site improvements, including enhancements to the El Camino Real streetscape, were provided.

Project Data
Phase: Construction
Architect: Hunt Hale Jones
Contractor: Vance Brown Builders/Building & Beyond
Gross Square Feet: New Construction 53,824
Department: Athletics, Physical Education, and Recreation (DAPER)
OLMSTED TERRACE FACULTY HOMES

Background
High-quality affordable housing on campus plays a critical role in recruiting and retaining Stanford faculty. To provide new affordable homes for faculty, the Board of Trustees approved plans, budget and schedule for the development of 39 single-family detached homes on a parcel located between Stanford Avenue and Olmsted Road. The homes are eligible for purchase by faculty subject to a non-renewable, restrictive 51-year ground lease. At the time of resale, the homes must always be sold back to Stanford for a capped resale price designed to assure the homes will remain affordable over time for eligible faculty and staff.

Scope
The project scope entails 39 detached single-family homes built at 5.8 units to the gross acre. Four unique two-story floor plans were designed exclusively with Stanford faculty in mind. The floor plans offer three or four bedrooms and range from 1,930 to 2,400 sf of living area. Each home has a private study and a two-car garage with extra storage and space for bicycles. Stanford also provides a multi-year limited warranty to the lessees, as well the option to customize some finishes in the homes. The homes are clustered around shared private courtyards and auto courts to minimize curb cuts on Olmsted Road and to optimize the unit yield along this narrow parcel, while allowing for a public jogging trail and sidewalks along Stanford Avenue and Olmsted Road.

Construction on the site infrastructure and homes began in September 2009. A fully decorated model home was opened in April 2010, at which time the homes were sold on a first-come, first-served basis to the 175 prospective faculty buyers who submitted “expressions of interest.” By early August 2010, all 39 homes had been sold for prices ranging from the $700,000’s to the $900,000’s. The first home was delivered in mid-August. The project is under budget, with a $700,000 average construction cost per home, and is on track to deliver approximately five homes per month until project close-out in April 2011.

Project Data
Project Phase: Construction
Architect: William Hezmalhalch Architects
Contractor: Regis Contractors of Northern California
Gross Square Feet: New Construction 85,000
Department: President/Provost (PRES/PROV)

Olmsted Terrace Faculty Homes - Sample Home

Olmsted Terrace Faculty Homes - Sample Home Kitchen
BING CONCERT HALL

Background
Stanford has launched an initiative that is engaging the entire campus in innovative efforts to reimagine the role of the arts. The Stanford Arts Initiative will raise the arts to a new level of prominence on campus, deepen the many ties binding Stanford to the community and the larger world, and create an arts-rich environment that will increasingly distinguish the University of the Future.

The Bing Concert Hall will be an acoustically exceptional hall that will be well suited for a range of music groups from small chamber ensembles to a medium-sized orchestra. The new hall will present visiting artists in an environment ideally suited to their art and will potentially give Stanford the reputation for being one of the country’s premier hosts of chamber, recital, and world music.

Scope
The new 112,635 gsf concert venue will feature a vineyard style hall with seating for approximately 844 patrons. The new facility will provide well designed and functional ‘back of house’ spaces such as green rooms, dressing rooms, rehearsal space, storage and service spaces. The Concert Hall will have public areas, which include a lobby, spaces for master classes, receptions, pre-show community events and offices for house management staff. The site is bordered by the Alumni Center, Campus Drive East, Lasuen Street, and Frost Amphitheatre and is opposite the Cantor Center.

The Concert Hall architecture blends notions of a contemporary world-class concert hall with attributes that support Stanford’s sense of place. The Concert Hall’s stucco mass is an iconic, oval form with vertical notches on the exterior face, a larger notch on the entry side and a secondary notch that can be seen from the Alumni Center and the Visitor’s Center. Its massing and height are similar to the central entrance feature of the Cantor Center. The lobby component of the hall provides a sense of scale and highlights the glass transparency of the lobby wall. A prominent overhang on the entry side and an arcade on the south side provide protection for pre-function events and breakout space during intermission. In the spirit of Memorial Auditorium and the Old Union, the exterior materials, primarily stucco and glass, will be consistent with the Stanford color palette.

The interior architecture continues the blend of clean, tailored lines combined with a sense of warmth. Interior lobby light wells harvest the natural light and provide opportunity to bring unique landscape elements into the lobby. The interior of the Concert Hall juxtaposes natural wood appointments in the performance area and patron seating levels with uplifting lighter and softer materials that highlight the ‘sails.’ Special attention has been paid to providing an abundance of rest room facilities for patron’s comfort.

Project Data
Project Phase: Project/Construction
Architect: Ennead Architects LLP
(formerly Polscheck Partnership Architects)
Contractor: Turner Construction
Gross Square Feet: New Construction 112,635
Department: President/Provost (PRES/PROV)
FREIDENRICH CENTER FOR TRANSLATIONAL RESEARCH

Background
The proposed facility for the Jill and John Freidenrich Center for Translational Research (FCTR) will significantly impact Clinical and Translational Research (CTR) at Stanford University by providing a home to create and catalyze interactions among those involved in clinical and translational research. The FCTR will be the new focal point for CTR research by bringing together the two major NIH (National Institutes of Health) funded clinical and translational biomedical research units in the School of Medicine into a single supportive environment. The new facility will also house the National Cancer Institute (NCI) supported Stanford Cancer Center and the National Center for Research Resources (NCRR) supported Center for Clinical and Translational Research and Education, called Spectrum. The FCTR will facilitate the following:

• Assemble and organize resources and personnel from across the university to increase efficiency, catalyze innovation, and promote interdisciplinary interactions among investigators and research staff.

• Provide an inviting and efficient space to conduct CTR, where the comfort and safety of research subjects and staff is crucial given the increasing number of pediatric subjects involved in CTR at Stanford.

• Improve sustainability and efficiency in CTR by using a “green” and sustainable design approaches to construct an environmentally friendly facility.

Scope
The 32,500 gsf FCTR facility will be a three-story building on a 1.4 acre lot at the corner of Welch Road and the future extension of Durand Way. The existing 50-year old building located at 800 Welch Road, which has reached the end of its useful life, will be demolished to clear the site for the new building. The site is a very prominent area within the Medical Center, and attests to Stanford’s commitment to improving CTR research at Stanford and in the nation. The facility will seek a LEED silver certification form the City of Palo Alto.

The FCTR has been designed as a gateway building that will set a scale and siting strategy for future buildings along Welch Road. The architecture uses the kit of parts that has been established in the most recent collection of School of Medicine buildings to meld the more contemporary character of the Medical Center with the material palette of the central campus. The base of the building will be clad in terra cotta to provide warmth, evoke a sense of permanence, and reference the Stanford terra cotta roof tile. The body of the building (the second and third floors) combines Rocamal’s limestone and window-wall systems recently used in the Li Ka Shing Center for Learning and Knowledge and the Lokey Stem Cell Research building. The articulation of the building envelope provides the opportunity to create third-floor useable covered balcony space and second-floor programmed roof top terrace areas and also enables a passive means of controlling the solar gain. A projecting roof/fascia references the Clark Center and LKSC red roof lids, and reflects the flat roof guidelines predominant in the Medical Center.

The site is designed to complement and support the program functions within the facility. The tree lined pedestrian path from Welch Road to the intimate entry courtyard provides a clear procession to the front door. A more intimate path from the parking on the north face of the building leads to a separate entry for the Pediatric Clinic with an exterior play area situated directly off the waiting area. Intimate garden spaces, located adjacent to the glass windows of the infusion areas, will encourage a soothing atmosphere and view from within.

Project Data
Project Phase: Design
Architect: WRNS
Contractor: Devcon
Gross Square Feet: New Construction 32,500
School: Medicine (SOM)

FCTR - Welch Road Elevation
SLAC/RESEARCH SUPPORT BUILDING

Background
The SLAC National Accelerator Laboratory supports a large national and international community of scientific users performing cutting edge research in support of the Department of Energy’s (DOE) mission. Success of this mission is directly coupled to the general-purpose infrastructure required to conduct this research.

SLAC has moved from a single program to a multi-program laboratory; this transition, combined with the condition and age of SLAC facilities, drives the need to consolidate core research functions and modernize key support buildings. The most pressing infrastructure gaps are the lack of appropriate space to house and collocate accelerator scientists and key mission support staff who are currently spread across the Laboratory in outdated and inefficient facilities. The proposed SLAC Research Support Building (RSB) and Infrastructure Modernization Project will address these capability gaps and enable the following goals:

- Provide safe, energy efficient, and fully compliant spaces for cutting edge 21st-century science.
- Provide general-purpose research and institutional facilities to allow the collocation of related groups with shared interests and objectives.
- Enable interaction among researchers and graduate students with complementary interests.

Scope
The project scope involves the new facility and the demolition of substandard buildings to provide progressive space for furthering the scientific programs at SLAC. The new RSB will be a 64,000 gsf, three-story, energy efficient and environmentally sustainable building.

The new RSB will be located at the corner of Loop and Target Roads between Central Campus and the Support Area of the SLAC campus.

The design of the RSB will emphasize open, collaborative environments, with flexibility to respond to future mission changes. The new three-story building will accommodate approximately 300 employees and will include office space for researchers, small group collaboration spaces, equipment areas, rest rooms, circulation space, and supporting infrastructure. The facility will house accelerator scientists and engineers in one modern facility that will help promote efficiency and synergy among collaborators. The new facility will meet LEED Gold certification with LEED NC version 2.2.

Project Data
Project Phase: Design
Architect: RMW Architecture & Interiors
Contractor: tbd
Gross Square Feet: New Construction 64,000
Department: SLAC National Accelerator Laboratory
BIOENGINEERING/CHEMICAL ENGINEERING BUILDING

Background

The Bioengineering/Chemical Engineering building (BioE/ChemE) and associated connective elements is the final jewel of the Science and Engineering Quad 2 (SEQ 2) and a component of the Stanford’s larger SEMC (Science, Engineering and Medical Campus) initiative. This building will be constructed on the northwestern portion of the new SEQ 2, directly north from the existing Y2E2 building and directly west of the newly constructed Center for Nanoscale Science and Engineering, thereby completing the new quadrangle.

BioE/ChemE will be a facility embodying interdisciplinary studies through the placement of two related programs-Bioengineering and Chemical Engineering-side by-side. Bioengineering’s mission is to create a fusion of engineering and the life sciences to promote scientific discovery and the development of new technologies and therapies through research and education. Chemical Engineering is focused on conceptualizing and designing processes for the production, the chemical or physical transformation of, and the transportation of materials. The building will be predominantly comprised of wet laboratory spaces designed for intensive research for each of the departments.

Scope

The 153,000 gsf BioE/ChemE building will match the architectural character of the neighboring Y2E2, HEC, and Nano Center buildings, including limestone veneer, trellises, concrete pavers, landscaping, benches, lighting, etc. The existing Ginzton Laboratory building will be demolished to clear the site for the new BioE/ChemE building.

The new building will consist of three stories above grade and a single basement level below grade. The building will include laboratory research facilities and support spaces, faculty offices, classrooms, and conference spaces. This project includes connective elements that link the various precincts of the quadrangle to each other. The primary connective element is the arcade which links the buildings on the east/west axis along both sides of the quad. Other features include a variety of exterior landscape “rooms” with benches, shrubs, planted mounds, and trees, together defining and forming exterior gathering places.

Mass excavation for the building is anticipated to start in summer/early fall 2010 and the overall construction activities are anticipated to be complete in late 2013.

Project Data

Project Phase: Concept and Site

Architect: BOORA Architects, Inc.
Contractor: tbd
Gross Square Feet: New Construction 205,000
School: Engineering (SOE)
MANZANITA UNDERGRADUATE DORM

Background
The proposed new Manzanita project will be the first undergraduate residence hall built on campus in 20 years. The new dorm, including program and ancillary student support facilities, will be located in Manzanita Park, which presently consists of three undergraduate coeducational dormitories - Kimball, Castaño and Lantana Halls. The Manzanita Park complex also includes the Manzanita Dining Hall along with outdoor gathering spaces and nearby sports courts.

Scope
The proposed dorm consists of a 39,900 gsf building located on three-stories above grade with a partial basement. The site boundaries include the building footprint and adjacent land available for specific programming, landscaping, site requirements, and other treatments directly related to the building and its users. The comprehensive work scope may also include off-site mitigations, roadway improvements, connections, landscape treatments, and construction staging and operations required to fit the completed project into its neighborhood.

Site Planning
- Building setbacks shall be a minimum of 30\textquotesingle from any existing Manzanita Park structures.
- Building footprint shall not encroach into the existing fire lanes to the north and east of the site.

Circulation
- Provide a connection to existing area walkways and bike routes.
- Locate parking adjacent to the site for handicap and services access.

Architecture
- Match the design style, materials, proportions, and rhythm of the existing Manzanita Park buildings.
- Preserve some of the original design characteristics inherent in the period of the complex.

Landscape
- Comply with *Stanford University Landscape Design Guidelines* and *Campus Signs and Furnishings Standards* for design, site work, outdoor fixtures and furnishings.

Project Data
- Project Phase: Concept and Site
- Architect: tbd
- Contractor: tbd
- Gross Square Feet: New Construction 39,900
- Department: Residential & Dining Enterprises (R&DE)
2010/11 – 2012/13 FORECASTED PROJECTS MAP

1. R&DE Access Control Enterprise System Phase 2 (not shown on map)
2. H&S McMurtry Art and Art History Building
3. R&DE Escondido Village Conversion - Phase 2
4. ITS/AS Forsythe Data Center - Phase 3 Expansion
5. PRES/PROV Graduate School of Business Complex Repurposing
6. SUSE School of Education Building Seismic Renovation - Phase 2
7. DOR/ITS Scientific Research Computing Facility (at SLAC) (not shown on map)
2010/11 – 2012/13 FORECASTED PROJECT DESCRIPTIONS

This section provides brief descriptions of forecasted projects based on the 2010/11 Capital Plan.

<table>
<thead>
<tr>
<th>SCHOOL/DEPT</th>
<th>PROJECT</th>
<th>YEAR COMPLETION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&DE</td>
<td>Access Control Enterprise System - Phase 2</td>
<td>2015</td>
</tr>
<tr>
<td>H&S</td>
<td>McMurtry Art and Art History Building</td>
<td>2014</td>
</tr>
<tr>
<td>R&DE</td>
<td>Escondido Village Conversion - Phase 2</td>
<td>2012</td>
</tr>
<tr>
<td>ITS/AS</td>
<td>Forsythe Data Center - Phase 3 Expansion</td>
<td>2011</td>
</tr>
<tr>
<td>PRES/PROV</td>
<td>Graduate School of Business Complex Repurposing</td>
<td>2013</td>
</tr>
<tr>
<td>SUSE</td>
<td>School of Education Building Seismic Renovation - Phase 2</td>
<td>2015</td>
</tr>
<tr>
<td>DOR/ITS</td>
<td>Scientific Research Computing Facility (at SLAC)</td>
<td>2015</td>
</tr>
</tbody>
</table>
Campus Model at LBRE on Porter Drive
FORECASTED PROJECTS

Access Control Enterprise System - Phase 2
Department: Residential & Dining Enterprises (R&DE)
Estimated Completion Date: 2015

In support of maintaining a secure campus and in response to the safety incidents at similar institutions, Stanford implemented a Security System Standards and Guidelines Program in 2006-07 to enhance campus security, crisis, and emergency response capabilities. This program launched projects for a campus-wide mass notification system, a siren system, and a centralized, integrated Access Control Enterprise System (ACES). The multi-faceted scope of ACES is to select a security system application and platform with flexible, modular components to serve the campus; establish a security standard for new construction, renovations and retrofits of existing facilities; and implement a prototype of the new system in R&DE buildings.

McMurtry Art and Art History Building
School: Humanities and Sciences (H&S)
Estimated Completion Date: 2014

As part of the Arts Initiative, the Art and Art History Department (including the newly incorporated Film and Media Studies Program) will move to a new facility on the site of the Old Anatomy Building adjacent to the Cantor Arts Center and neighboring the Bing Concert Hall, which is expected to be complete by summer 2012. The renovation of Old Anatomy for the Film and Media Studies Program will be fully funded by gifts. These new facilities support significant academic initiatives of the Stanford Challenge.

Escondido Village Conversion - Phase 2
Department: Residential & Dining Enterprises (R&DE)
Estimated Completion Date: Summer 2012

The scope of work proposes to convert 90 one-bedroom apartments to two-bedroom units. In 2008/09, 130 units were converted using the same concept at an approximate cost of $4.0 million.

The project will convert 90 one-bedroom apartments on the fourth through twelfth floors designed for single/couple occupancy to 90 two-bedroom efficiency apartments designed for occupancy by two single students. The building houses 110 apartments; 20 apartments were completed in summer 2009. The scope of work includes kitchen modifications, including counter and storage modifications; new appliances; new demising wall to the kitchen; new furniture; new demising wall to create second student room; new closet; associated electrical and mechanical work as required; and modifications to the first floor to create new common areas.
Forsythe Data Center - Phase 3 Expansion
Departments: Information Technology Services/Administrative Systems (ITS/AS)
Estimated Completion Date: 2011

This renovation project is needed to provide computing space that will directly support the Research Computing programs at Stanford and SLAC. Existing satellite spaces on campus are no longer able to meet the growth demands necessary to address the research programs. Requests for centralized computing space from the Schools are on the rise. Negotiations with SLAC have already resulted in the installation of a 195-node cluster. By investing in this project, the university will be able to consolidate new computing equipment/clusters in a cost effective and environmentally efficient manner. Furthermore, by dedicating this space only to research programs, the university will be able to provide the flexibility for principal investigators to install research equipment as they deem appropriate to their field of study.

The project allows for design development of the Forsythe Phase 3 renovation project. The project scope includes developing options and the renovation cost of approximately 5,100 gsf of existing office and corridor space to support high density Research Computing for Stanford University.

Due to the potential increased demands on the university’s electrical and chilled water infrastructure, it is imperative that a different design approach be employed. In order to achieve maximum environmental efficiencies, the design must incorporate products and methodologies that will allow for greater Delta-Ts in return water temperature to the Cogen plant and improved Power Usage Efficiency (PUE) for electrical support infrastructure.

School of Education Building Seismic Renovation - Phase 2
School: Education (SUSE)
Estimated Completion Date: 2015

Phase 2 of this renovation project will address the remaining scope to complete seismic upgrades per the 2006 Seismic Upgrade Feasibility Study, which recommended that the project be completed within seven years of the study (by 2013). LBRE has prepared a benchmarked cost, which has been escalated to fiscal year 2013/14 (construction start date) and excludes surge costs. The estimated cost of the Phase 2 seismic work is $8.6 million.

Scientific Research Computing Facility (at SLAC)
Departments: Dean of Research/Information Technology Services (DOR/ITS)
Estimated Completion Date: 2015

ITS/AS and SLAC Computing Centers are both operating at the upper limits of their capacity and are unable to provide additional computing needs required by the growth of research computing programs on both campuses. To meet the rising demand of computing requirements, DOR and ITS/AS have proposed a modular, scalable, energy-efficient and high density facility that will support both SLAC and Main Campus-based research programs. The initial scope involves construction of one of four modules at an estimated cost of $44 million.

Graduate School of Business Complex Repurposing
Department: President/Provost (PRES/PROV)
Estimated Completion Date: 2013

The availability of the existing GSB complex after the School relocates to the Knight Management Center creates an opportunity to repurpose these three buildings for use by other academic and support functions. A reuse of the facility is being studied. The project cost of $71 million is an estimated split between the GSB South building ($51 million) and the Knight and Littlefield buildings ($20 million). As the project scope is refined, the project cost will be adjusted, accordingly.
2009/10 CAPITAL PROGRAM DESCRIPTIONS

This section provides brief descriptions of all LBRE capital programs.

<table>
<thead>
<tr>
<th>PROGRAMS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Utilities Program (CUP)</td>
<td>48</td>
</tr>
<tr>
<td>General Use Permit (GUP) Mitigation</td>
<td>48</td>
</tr>
<tr>
<td>Whole Building Energy Retrofit Program</td>
<td>49</td>
</tr>
<tr>
<td>Stanford Infrastructure Program (SIP)</td>
<td>49</td>
</tr>
<tr>
<td>Storm Drainage Capital Improvement Project</td>
<td>49</td>
</tr>
</tbody>
</table>

Stanford Wildflowers - May 2010
Capital Utilities Program (CUP)
CUP consists of projects that focus on the improvement, renewal, and expansion of Stanford’s energy and water infrastructure in response to campus growth. The projects fall into two categories: system expansion and system replacement. The program ensures the high reliability of the utilities systems, including electrical, steam, chilled water, domestic water, recycled water, lake water, and wastewater, and their compliance with federal and state regulations.

General Use Permit (GUP) Mitigation
The three-year plan addresses capital expenditures for GUP mitigation. These planned expenditures are required to fulfill the Conditions of Approval of the General Use Permit and Community Plan approved by Santa Clara County in December 2000. Ongoing expenditures have included the Trails Easements, Water and Habitat Conservation programs, and Transportation Demand Management programs. Funding for these expenditures will continue to be generated by GUP entitlement fees. These fees are levied on capital projects that increase the school department’s current core campus space allocation.
Whole Building Energy Retrofit Program
In 2004 Stanford completed the "12 Building Energy Study" and embarked on a retrofit program that would reduce energy consumption in the largest energy-intensive buildings. These 12 buildings consumed over $15 million in steam, chilled water, and electricity annually, and represented fully one-third of campus energy use. If all the recommendations of the study were completed, over $4 million in annual energy costs would be avoided. As a result of the successful reduction of energy consumption in the buildings completed to date, the program has now been expanded to address an additional 12 buildings that will yield further cost savings and energy use reductions.

Stanford Infrastructure Program (SIP)
SIP consists of campus planning and transportation projects and programs for the improvement and general support of the university’s academic community, hospitals and physical plant. These projects include the construction of parking, bicycle and pedestrian paths, lighting and outdoor art, campus transit, roads and parking lot infrastructure, and other site improvements.

Storm Drainage Capital Improvement Program
After sustaining significant damage and interruptions in operations during the February 1998 storms, Stanford recognized the need to engineer and implement improvements to the campus storm drainage system. In order to provide increased flood protection and meet the GUP 2000 Conditions of Approval, the system needed to move beyond conventional engineering standards by engineering and implementing improvements such as surface diversions and runoff detention facilities that would handle infrequent but larger storm runoff flows. The program is currently completing these drainage improvement measures, and continues to focus on the engineering and implementation of recently adopted storm water quality regulations and on correcting drainage system deficiencies.
Below is a complete list of photos and illustrations credits in the Annual Report.

<table>
<thead>
<tr>
<th>PHOTO</th>
<th>CREDIT/PROVIDED</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bing Concert Hall - Lasuen Perspective</td>
<td>UA/CPD</td>
<td>Front Cover</td>
</tr>
<tr>
<td>Bing Concert Hall - Construction Site</td>
<td>Karin Moriarty, LBRE</td>
<td>Front Cover</td>
</tr>
<tr>
<td>Jen-Hsun Huang Engineering Center</td>
<td>Karin Moriarty, LBRE</td>
<td>Back Cover</td>
</tr>
<tr>
<td>Main Quad View - LBRE Home Page Photo</td>
<td>Karin Moriarty, LBRE</td>
<td>xii</td>
</tr>
<tr>
<td>New Bike Compound outside Meyer Library</td>
<td>Eva Rose Leavitt, UA/CPD</td>
<td>5</td>
</tr>
<tr>
<td>Hybrid Marguerite Free Shuttle</td>
<td>Karin Moriarty, LBRE</td>
<td>6</td>
</tr>
<tr>
<td>Li Ka Shing Center for Learning and Knowledge</td>
<td>Karin Moriarty, LBRE</td>
<td>7</td>
</tr>
<tr>
<td>Jen-Hsun Huang Engineering Center</td>
<td>Karin Moriarty, LBRE</td>
<td>7</td>
</tr>
<tr>
<td>Crothers Memorial/Taper Student Center</td>
<td>Karin Moriarty, LBRE</td>
<td>8</td>
</tr>
<tr>
<td>Automotive Innovation Facility</td>
<td>Karin Moriarty, LBRE</td>
<td>8</td>
</tr>
<tr>
<td>Los Trancos - Water Diversion Project</td>
<td>Alan Launer, LUEP</td>
<td>9</td>
</tr>
<tr>
<td>Tree Frog - HCP</td>
<td>Alan Launer, LUEP</td>
<td>9</td>
</tr>
<tr>
<td>California Tiger Salamander - HCP</td>
<td>Alan Launer, LUEP</td>
<td>9</td>
</tr>
<tr>
<td>Matadero Creek Pedestrian Trail</td>
<td>Maria Cacho, LUEP</td>
<td>10</td>
</tr>
<tr>
<td>Matadero Creek Multiuse Trail</td>
<td>Maria Cacho, LUEP</td>
<td>10</td>
</tr>
<tr>
<td>Cantor Center - New Humidifier Coils</td>
<td>Greg Spinalli, Zones</td>
<td>11</td>
</tr>
<tr>
<td>New Landscape Area outside Peterson Building</td>
<td>Eva Rose Leavitt, UA/CPD</td>
<td>11</td>
</tr>
<tr>
<td>Lake Lagunita - Water Detention Basin</td>
<td>Alan Launer, LUEP</td>
<td>11</td>
</tr>
<tr>
<td>Renderings of Current Construction Projects</td>
<td>Provided by UA/CPD</td>
<td>13</td>
</tr>
<tr>
<td>Miscellaneous Pictures of Campus Places and Artifacts</td>
<td>Karin Moriarty, LBRE</td>
<td>14</td>
</tr>
<tr>
<td>2009/10 Capital Projects Campus Map</td>
<td>Wilson Lee, Maps and Records</td>
<td>16</td>
</tr>
<tr>
<td>Campus Aerial - Summer 2010</td>
<td>Provided by Joe Ryan, LUEP</td>
<td>18</td>
</tr>
<tr>
<td>Automotive Innovation Facility</td>
<td>Karin Moriarty, LBRE</td>
<td>19</td>
</tr>
<tr>
<td>Automotive Innovation Facility</td>
<td>Sapna Marfatia, UA/CPD</td>
<td>19</td>
</tr>
<tr>
<td>Center for Nanoscale Science and Engineering</td>
<td>Karin Moriarty, LBRE</td>
<td>20</td>
</tr>
<tr>
<td>Center for Nanoscale Science and Engineering Fit-up</td>
<td>Karin Moriarty, LBRE</td>
<td>21</td>
</tr>
<tr>
<td>John A. and Cynthia Fry Gunn Building</td>
<td>Karin Moriarty, LBRE</td>
<td>22</td>
</tr>
<tr>
<td>Jen-Hsun Huang Engineering Center</td>
<td>Karin Moriarty, LBRE</td>
<td>23</td>
</tr>
<tr>
<td>SEQ 2 Connective Elements</td>
<td>Karin Moriarty, LBRE</td>
<td>24</td>
</tr>
<tr>
<td>Li Ka Shing Center for Learning and Knowledge</td>
<td>Karin Moriarty, LBRE</td>
<td>25</td>
</tr>
<tr>
<td>SOM Connective Elements - Discovery Walk</td>
<td>Karin Moriarty, LBRE</td>
<td>26</td>
</tr>
<tr>
<td>Lorry I. Lokey Stem Cell Research Building</td>
<td>Virginia Wilson, UA/CPD</td>
<td>27</td>
</tr>
<tr>
<td>Peterson Building Renovation</td>
<td>Karin Moriarty, LBRE</td>
<td>28</td>
</tr>
<tr>
<td>Project Description</td>
<td>Contact Person</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>Visitor Information Center/Track Bleachers Expansion</td>
<td>Karin Moriarity, LBRE</td>
<td>29</td>
</tr>
<tr>
<td>East Campus Dining Commons Perspective</td>
<td>UA/CPD</td>
<td>30</td>
</tr>
<tr>
<td>HP Garage Replica - Huang Engineering Center Fit-up</td>
<td>Wayne Kelley, DPM</td>
<td>31</td>
</tr>
<tr>
<td>Story Telling - Huang Engineering Center Fit-up</td>
<td>Karin Moriarty, LBRE</td>
<td>31</td>
</tr>
<tr>
<td>Knight Management Center - View from Serra Street</td>
<td>Karin Moriarty, LBRE</td>
<td>32</td>
</tr>
<tr>
<td>Madera Grove Children’s Center/Mulberry House</td>
<td>UA/CPD</td>
<td>33</td>
</tr>
<tr>
<td>William H. Neukom Building Rendering</td>
<td>UA/CPD</td>
<td>34</td>
</tr>
<tr>
<td>William H. Neukom Building - Rotunda View</td>
<td>Karin Moriarty, LBRE</td>
<td>34</td>
</tr>
<tr>
<td>Olmsted Road Staff Rental Housing - New Homes</td>
<td>Elena Angoloti, UA/CPD</td>
<td>35</td>
</tr>
<tr>
<td>Olmsted Terrace Faculty Homes - New Models</td>
<td>Real Estate</td>
<td>36</td>
</tr>
<tr>
<td>Bing Concert Hall - Lasuen Perspective</td>
<td>UA/CPD</td>
<td>37</td>
</tr>
<tr>
<td>Bing Concert Hall - View of Construction Site</td>
<td>Karin Moriarty, LBRE</td>
<td>37</td>
</tr>
<tr>
<td>Freidenrich Center for Translational Research</td>
<td>UA/CPD</td>
<td>38</td>
</tr>
<tr>
<td>SLAC Research Support Building - Perspectives</td>
<td>UA/CPD</td>
<td>39</td>
</tr>
<tr>
<td>Bioengineering/Chemical Engineering Building</td>
<td>Elena Angoloti, UA/CPD</td>
<td>40</td>
</tr>
<tr>
<td>Manzanita Undergraduate Dorm - Site Plan</td>
<td>Sapna Marfatia, UA/CPD</td>
<td>41</td>
</tr>
<tr>
<td>2010/11 - 2012/13 Forecasted Projects Map</td>
<td>Wilson Lee, Maps and Records</td>
<td>42</td>
</tr>
<tr>
<td>Campus Model - Stanford at Porter Drive</td>
<td>Karin Moriarty, LBRE</td>
<td>44</td>
</tr>
<tr>
<td>Old Anatomy Building - Outside View</td>
<td>Laura Jones, LUEP</td>
<td>45</td>
</tr>
<tr>
<td>Quillen Building - Exterior View</td>
<td>UA/CPD</td>
<td>45</td>
</tr>
<tr>
<td>Campus Wildflowers by Medical School</td>
<td>Karin Moriarty, LBRE</td>
<td>47</td>
</tr>
<tr>
<td>Los Trancos - Water Diversion Project</td>
<td>Alan Launer, LUEP</td>
<td>48</td>
</tr>
<tr>
<td>Los Trancos - Fish Ladder Cleaning System</td>
<td>Alan Launer, LUEP</td>
<td>48</td>
</tr>
<tr>
<td>Matadero Creek Multiuse Trail</td>
<td>Maria Cacho, LUEP</td>
<td>48</td>
</tr>
<tr>
<td>California Red-Legged Frog</td>
<td>Alan Launer, LUEP</td>
<td>48</td>
</tr>
<tr>
<td>Forsythe Roof Replacement</td>
<td>Karin Moriarty, LBRE</td>
<td>49</td>
</tr>
<tr>
<td>Stauffer Building - Modified HVAC Duct Work</td>
<td>Greg Spinalli, Zones</td>
<td>49</td>
</tr>
<tr>
<td>Crothers Residence Bocce Court/Plaza</td>
<td>Eva Rose Leavitt, UA/CPD</td>
<td>49</td>
</tr>
<tr>
<td>New Bike Lockers Compound at PS 2</td>
<td>Eva Rose Leavitt, UA/CPD</td>
<td>49</td>
</tr>
<tr>
<td>Areas Managed Map</td>
<td>Joe Ryan, LUEP</td>
<td>60</td>
</tr>
<tr>
<td>Research Park Photos of Buildings</td>
<td>Real Estate Department</td>
<td>62</td>
</tr>
<tr>
<td>Stanford Shopping Center</td>
<td>Real Estate Department</td>
<td>63</td>
</tr>
<tr>
<td>Sand Hill Road Office Complex Aerial View</td>
<td>Real Estate Department</td>
<td>64</td>
</tr>
<tr>
<td>Rosewood Sand Hill Hotel and Office Complex</td>
<td>Real Estate Department</td>
<td>65</td>
</tr>
<tr>
<td>Vi at Palo Alto - Views</td>
<td>Real Estate Department</td>
<td>66</td>
</tr>
<tr>
<td>Oak Creek Apartments, Sand Hill Road</td>
<td>Karin Moriarty, LBRE</td>
<td>67</td>
</tr>
<tr>
<td>Stanford Park Hotel on El Camino Real in Menlo Park</td>
<td>Karin Moriarty, LBRE</td>
<td>67</td>
</tr>
</tbody>
</table>
Design and photography (LBRE Annual Report and Cover): Karin Moriarty
Design for Real Estate and Appendix A: Pat Brito
http://lbre.stanford.edu