Solving Ongoing Change Permanently through Surge Buildings

Margaret Dyer
Chamberlain, Director of Capital Planning, Stanford University

Judith O’Boyle
Director of Analytical Studies and Space Planning, University of California, San Diego

Marilyn Cox
Assistant Vice Provost for Capital Planning, University of Washington

John H. Gormley, AIA, Cannon Design, moderator
Agenda

• Factors for Success in Surge Space Planning
• Case Study – UW Condon Hall “Restore the Core”
• Case Study – UCSD Peppery Canyon Hall “Lean Mean Programming Machine”
• Case Study – Stanford University “Challenges in the Privates”
• Evaluating Success
Factors for Success in Surge Space Planning

What Are Your Surge Space Needs?

• Factors to Consider
• Long Term vs. Short Term Needs
• Objective Criteria to Aid Decision-Making
Managing Expectations

• Obtain Buy-In from Key Stakeholders
• Form the Right Team for Programming Decisions
• View the Facility as a “Campus Building”
• Understand the Differences between Traditional Facilities and Surge Space
Evaluating Surge Options

- New Building
- Existing Space Adapted for Reuse as Surge Space
- Owned/Leased Off-Site Facilities
- Owned/Leased Modular Buildings
Financing Surge Buildings

- Non-public funding
- State funding
- Donor opportunities
- Specific projects fund their own surge requirement
- 3rd party developer driven process
Surge Space Planning & Design

- This is a “Campus Building”
- Scenario Planning for Short- and Long-Term Needs
- Alternate Delivery Method
- Alternate Decision-Making Process
- Develop Appropriate Performance and Life-Cycle Assumptions
- Long-Range Planning as Part of The Initial Design Process
Restoring the Campus Core at The University of Washington

- The University of Washington is one of the oldest west coast campuses
- Founded in 1861
- Relocated to the present site in 1895
- 1909 Alaska-Yukon Pacific Exposition

The University of Washington Today

- > 40,000 students
- $6 billion physical plant
- 16,000,000 square feet
- No. 1 public university nationally in federal grants
Facilities Condition Index

- FACMAN Data Base prioritizes needs
- FCI = $ Cost of Repairs
 Current Replacement Value (CRV)
- > 100% FACI Places Buildings on the “Critical Building List”
- Some of These are “Duisenbergs” that should be restored
- Needs Index Model

University of Washington Condon Hall
“Restoring The Core”
Critical Building List

• Historic buildings outmoded for modern instructional needs
• 15 buildings placed on “Critical Buildings List”
• Average age 88 years: each with an FCI near or above 100%
University of Washington Condon Hall
“Restoring The Core”

Restoring the Core
• Critical buildings contain ¼ of general assignment classrooms
• 1,000,000 GSF +/-
• 30,000 students receive instruction in at least one of the these buildings per quarter
• 10% of non-self-sustaining space at University of Washington
Beautiful Buildings in Need of Renewal

- Renovation costs exceed replacement, but . . .
- Completely decanting the building makes it cost effective
- They are an integral part of campus fabric and history
- Until recently, we have been unable to vacate them, for major renovation
Condon Hall – Key to the Surge Space Plan

- New Law School opening allowed for Condon Hall to be used as surge space
- First building to be used exclusively as surge space for other projects
- 82,000 asf available, but how best to invest
- Develop prioritized list of critical buildings to be renovated
- How to get campus buy-in for this process?
Planning Assumptions Saved Time and Conflict

- Buildings assumed to be renovated for use by current occupants; no major program changes
- “Landlord Approach” – Condon Hall fitted out for “generic” users
- Investments made in basic building program
- Law library divided into classrooms
- Office space used mostly “as is”
- No wet lab uses
Weighted Criteria Matrix

- Ad Hoc Restoration Planning Committee, Division Dean of Arts and Sciences as Chair
- Included faculty, students and planning / facilities staff
- With outside help, developed “Weighted Criteria Matrix”
- Buildings evaluated using criteria for:
 - Life Safety – Seismic, fire protection
 - Building Condition – overall condition from good – poor, FCI %, accessibility, occupant load
 - Building Use Criteria – programs, research, classrooms, offices, program displacement
Fit Planning

- Each project assessed for its ability to use Condon Hall as temporary surge space
- All but three were determined to be capable of this
 - MHSC H-Wing
 - Playhouse Theater
 - Brooklyn Building
University of Washington Condon Hall
“Restoring The Core”

Lessons Learned

• “Restore the Core” – keeping parents, students, legislators and others involved
• “Brand Name Recognition” enabled state funding for formerly unfundable projects
• Framework for interim capital investment decisions
• Project Agreements confirm scope, schedule, budget and plan for space loss or trades
• Website keeps tenants informed of decisions
• Hire a move coordinator early on
• Classroom coordination and communications planning is essential
• Post occupancy reviews add to “lessons learned”
UC San Diego, Pepper Canyon Hall
“Lean Mean Operating Machine”

Surge Building Drivers

- 35% enrollment growth 2002 – 2010
- Commensurate growth in core staff
- Redevelopment of University Center/Sixth College Neighborhoods
 - 61,000 asf temporarily displaced
- Significant shortfalls in classroom seats
 - Must be funded from non-State sources
- New program initiatives –
 - Sixth College,
 - Rady School of Management,
 - School of Pharmacy
UC San Diego, Pepper Canyon Hall
“Lean Mean Operating Machine”

Typical Planning Process

• Locally developed space guidelines
• Triennial survey of campus space needs
• Updated Administrative Space Management Plan
• Annual presentation of capital improvement needs by each Vice Chancellorial area to COSAC
• COSAC establishes Capital Improvement Program priorities

05 – 09 Capital Improvement Plan
Building Planning Process - Typical

- Chancellor establishes building Advisory Committee (BAC)
- BAC membership includes:
 - Chair – Dean/Executive Administrator
 - Academic Senate
 - Student & Graduate Student
 - user Group Representation
 - Planning & Facilities Staff
- BAC responsibilities include:
 - Architect selection
 - Space plan development
 - Site selection
 - Design and approve final document submittals
- 4 year average time fram
UC San Diego, Pepper Canyon Hall
“Lean Mean Operating Machine”

Lessons Learned from UCR’s Surge Building

• Use an alternate planning/design process
• Minimize user group involvment
• Develop program early and don’t change midstream
• Facilitate user group buy-in to different process before starting
• Plan ahead!
UC San Diego, Pepper Canyon Hall
“Lean Mean Operating Machine”

Building Planning Process – Surge Building
• 70,500 asf project space deficit in 2002 Space Management Plan
• Findings/solution options presented to Chancellor’s Council
• CC requests a space/funding model for new surge project
• Model approved by Chancellor in March ’02
• Alternate delivery method approved to allow for occupancy 13 months faster than typical process.
UC San Diego, Pepper Canyon Hall
“Lean Mean Operating Machine”

Building Planning Process – Surge Building

- April ’02 – Site selection
- April ’02 - “Lean & Mean” BAC is appointed
 - Chair, Assoc. Vice Chancellor Academic Planning
 - Academic Senate representatives
 - Planning/Facilities Staff
 - User occupant
- BAC managed expectations to control budget
- Rapid decision-making process facilitated fast schedule
- August ’04 – Building occupied
- Planning – occupancy – 2 ½ years
Building Planning Process – Surge Building

- Design that allows for long-term flexibility
- Neighborhood plan revisited to accommodate different use, but still meet its overall goals
- New long-term home for Sixth College Administration that is welcoming and friendly
- Addition of need instructional space (750 seats) in University Center
- Building that is a good neighbor to planned developments
UC San Diego, Pepper Canyon Hall
“Lean Mean Operating Machine”

Lessons Learned

• Regular review of space needs and capital plans facilitated consensus
• Strong leadership provided guidance to lead the process
• BAC - small, meet often and include a few “tenants”
• BAC - rely on advice of experienced consultants
• Alternate delivery method works with buy-in
• Renting space forces departments to tighten their needs
• Enabled successful launch of the Rady School of Management
• Saved $2,000,000 in construction/renovation costs
Stanford University
“Project by Project Surge”

Current Surge Strategy
• Campus history of surge projects
• Current planning context
• Square footage constraints
• Costs and funding sources
History of Surge Projects

- 1989 Loma-Prieta Earthquake impacts required additional modular units
- University used modulars for surge space before
- Problems with modular surge space
 - Started as temporary replacement
 - These become permanent for administrative groups
 - Evolved into dated facilities in poor condition
- Attempts at permanent surge facilities rarely worked
Current Planning Context

- Projects ebb and flow as funding allows
- Capital plan does show a predictable series of renovation projects
- Projects planned on a school-by-school case
Square Footage Constraints

- General Use Permit (GUP)
 - Stanford is allowed to build 2,000,000 gsf of new construction
 - Current sf (incl. medical school) is 15,000,000 gsf
 - Have an allocation of 15,000 gsf for modular units

- How to justify new surge construction with limited allowable buildable area when alternate is to link surge with projects that come and go
Funding Sources

• How to justify University funds to build surge facilities instead of funding defined user buildings
Where Do We Go From Here

- Problems with current approach:
 - High cost of over-customized surge projects
 - Pitfalls of modulars
Stanford University
“Project by Project Surge”

Where Do We Go From Here

- Positives with current approach:
 - Each project “pays its own way”
 - GUP allowable area isn’t used for surge buildings
Where Do We Go From Here

- Alternatives to the current approach
 - Develop centralized surge space
 - Coordinate project schedules and funding sources
Evaluating the Success of Surge Projects

What Does Success Look Like?

• Be strategic from the beginning
• Identify drivers for surge space
• Understand short- and long-term needs
• Manage realistic expectations
• Plan for generic “campus” building
• Plan for flexibility
• Review alternate delivery methods that streamline the process, schedule and costs